মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
কাৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

det(\left(\begin{matrix}2&3&5\\0&2&4\\7&1&3\end{matrix}\right))
ডাইগ'নেল্সৰ পদ্ধতি ব্যৱহাৰ কৰি মেট্ৰিক্সৰ ডিটাৰমিনেণ্ট বিচাৰক৷
\left(\begin{matrix}2&3&5&2&3\\0&2&4&0&2\\7&1&3&7&1\end{matrix}\right)
প্ৰথম দুটা স্তম্ভক চতুৰ্থ আৰু পঞ্চম স্তম্ভ ৰূপে পুনৰাবৰ্তিত কৰি মূল মেট্ৰিক্সক বিস্তাৰ কৰক৷
2\times 2\times 3+3\times 4\times 7=96
ওপৰৰ বাঁও দিশৰ এন্ট্ৰীৰ পৰা আৰম্ভ কৰি, কোণীয়াকৈ তললৈ থকা এণ্ট্ৰী পুৰণ কৰক আৰু গুণফলৰ ফলাফল যোগ কৰক৷
7\times 2\times 5+4\times 2=78
একেবাৰে নিম্নদিশৰ বাঁও এণ্ট্ৰীৰ পৰা আৰম্ভ কৰি, ডায়েগনেলৰ সৈতে পুৰণ কৰক আৰু ফলাফলৰ গুণফলসমূহ যোগ কৰক৷
96-78
নিম্নদিশৰ ডায়েগ'নেল গুণফলসমূহৰ পৰা ওপৰ দিশৰ ডায়েগ'নেল গুণফলৰ যোগফলক বিয়োগ কৰক৷
18
96-ৰ পৰা 78 বিয়োগ কৰক৷
det(\left(\begin{matrix}2&3&5\\0&2&4\\7&1&3\end{matrix}\right))
এক্সপ্ৰেচন বাই মাইনোৰচ পদ্ধতি ব্যৱহাৰ কৰি মেট্ৰিক্সৰ ডিটাৰমিনেন্ট বিচাৰক (ইয়াক এক্সপ্ৰেশ্বন বাই কোফেক্টৰ বুলিও জনা যায়)৷
2det(\left(\begin{matrix}2&4\\1&3\end{matrix}\right))-3det(\left(\begin{matrix}0&4\\7&3\end{matrix}\right))+5det(\left(\begin{matrix}0&2\\7&1\end{matrix}\right))
মাইন'ৰৰ দ্বাৰা বিস্তাৰ কৰিবলৈ, প্ৰথম শাৰীৰ মাইন'ৰৰ দ্বাৰা প্ৰতিটো উপাদান পুৰণ কৰক, যিটো সেই উপাদান থকা শাৰী আৰু স্তম্ভ বিলোপ কৰি সৃষ্টি কৰা 2\times 2 মেট্ৰিক্সৰ ডিটাৰমিনেণ্ট, তাৰপিছত উপাদানটোৰ অৱস্থাৰ চিহ্নৰ দ্বাৰা পূৰণ কৰক।
2\left(2\times 3-4\right)-3\left(-7\times 4\right)+5\left(-7\times 2\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, নিৰ্ধাৰক ad-bc৷
2\times 2-3\left(-28\right)+5\left(-14\right)
সৰলীকৰণ৷
18
চুড়ান্ত ফলাফল লাভ কৰিবলৈ পদসমূহ যোগ কৰক৷