মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4x+y=-2,5x-2y=-48
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4x+y=-2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
4x=-y-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{4}\left(-y-2\right)
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{4}y-\frac{1}{2}
\frac{1}{4} বাৰ -y-2 পুৰণ কৰক৷
5\left(-\frac{1}{4}y-\frac{1}{2}\right)-2y=-48
অন্য সমীকৰণত x-ৰ বাবে -\frac{y}{4}-\frac{1}{2} স্থানাপন কৰক, 5x-2y=-48৷
-\frac{5}{4}y-\frac{5}{2}-2y=-48
5 বাৰ -\frac{y}{4}-\frac{1}{2} পুৰণ কৰক৷
-\frac{13}{4}y-\frac{5}{2}=-48
-2y লৈ -\frac{5y}{4} যোগ কৰক৷
-\frac{13}{4}y=-\frac{91}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{2} যোগ কৰক৷
y=14
-\frac{13}{4}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{1}{4}\times 14-\frac{1}{2}
x=-\frac{1}{4}y-\frac{1}{2}-ত y-ৰ বাবে 14-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-7-1}{2}
-\frac{1}{4} বাৰ 14 পুৰণ কৰক৷
x=-4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{7}{2} লৈ -\frac{1}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-4,y=14
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4x+y=-2,5x-2y=-48
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-48\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&1\\5&-2\end{matrix}\right))\left(\begin{matrix}4&1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-48\end{matrix}\right)
\left(\begin{matrix}4&1\\5&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-48\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-48\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{4\left(-2\right)-5}&-\frac{1}{4\left(-2\right)-5}\\-\frac{5}{4\left(-2\right)-5}&\frac{4}{4\left(-2\right)-5}\end{matrix}\right)\left(\begin{matrix}-2\\-48\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\\frac{5}{13}&-\frac{4}{13}\end{matrix}\right)\left(\begin{matrix}-2\\-48\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\left(-2\right)+\frac{1}{13}\left(-48\right)\\\frac{5}{13}\left(-2\right)-\frac{4}{13}\left(-48\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\14\end{matrix}\right)
গণনা কৰক৷
x=-4,y=14
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
4x+y=-2,5x-2y=-48
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\times 4x+5y=5\left(-2\right),4\times 5x+4\left(-2\right)y=4\left(-48\right)
4x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
20x+5y=-10,20x-8y=-192
সৰলীকৰণ৷
20x-20x+5y+8y=-10+192
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 20x+5y=-10-ৰ পৰা 20x-8y=-192 হৰণ কৰক৷
5y+8y=-10+192
-20x লৈ 20x যোগ কৰক৷ চৰ্তাৱলী 20x আৰু -20x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
13y=-10+192
8y লৈ 5y যোগ কৰক৷
13y=182
192 লৈ -10 যোগ কৰক৷
y=14
13-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x-2\times 14=-48
5x-2y=-48-ত y-ৰ বাবে 14-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x-28=-48
-2 বাৰ 14 পুৰণ কৰক৷
5x=-20
সমীকৰণৰ দুয়োটা দিশতে 28 যোগ কৰক৷
x=-4
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-4,y=14
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷