মুখ্য সমললৈ এৰি যাওক
y, x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y+5x=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 5x যোগ কৰক।
y-3x=-2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
y+5x=6,y-3x=-2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y+5x=6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=-5x+6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5x বিয়োগ কৰক৷
-5x+6-3x=-2
অন্য সমীকৰণত y-ৰ বাবে -5x+6 স্থানাপন কৰক, y-3x=-2৷
-8x+6=-2
-3x লৈ -5x যোগ কৰক৷
-8x=-8
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=1
-8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-5+6
y=-5x+6-ত x-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=1
-5 লৈ 6 যোগ কৰক৷
y=1,x=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y+5x=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 5x যোগ কৰক।
y-3x=-2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
y+5x=6,y-3x=-2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&5\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&5\\1&-3\end{matrix}\right))\left(\begin{matrix}1&5\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
\left(\begin{matrix}1&5\\1&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-5}&-\frac{5}{-3-5}\\-\frac{1}{-3-5}&\frac{1}{-3-5}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{5}{8}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 6+\frac{5}{8}\left(-2\right)\\\frac{1}{8}\times 6-\frac{1}{8}\left(-2\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
গণনা কৰক৷
y=1,x=1
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y+5x=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 5x যোগ কৰক।
y-3x=-2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
y+5x=6,y-3x=-2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y+5x+3x=6+2
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y+5x=6-ৰ পৰা y-3x=-2 হৰণ কৰক৷
5x+3x=6+2
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
8x=6+2
3x লৈ 5x যোগ কৰক৷
8x=8
2 লৈ 6 যোগ কৰক৷
x=1
8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y-3=-2
y-3x=-2-ত x-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=1
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
y=1,x=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷