\left\{ \begin{array} { l } { y = - \frac { 3 } { 2 } x + 3 } \\ { y = \frac { 3 } { 2 } x } \end{array} \right.
y, x-ৰ বাবে সমাধান কৰক
x=1
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
y+\frac{3}{2}x=3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে \frac{3}{2}x যোগ কৰক।
y-\frac{3}{2}x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{3}{2}x বিয়োগ কৰক৷
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y+\frac{3}{2}x=3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=-\frac{3}{2}x+3
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3x}{2} বিয়োগ কৰক৷
-\frac{3}{2}x+3-\frac{3}{2}x=0
অন্য সমীকৰণত y-ৰ বাবে -\frac{3x}{2}+3 স্থানাপন কৰক, y-\frac{3}{2}x=0৷
-3x+3=0
-\frac{3x}{2} লৈ -\frac{3x}{2} যোগ কৰক৷
-3x=-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
x=1
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-\frac{3}{2}+3
y=-\frac{3}{2}x+3-ত x-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{3}{2}
-\frac{3}{2} লৈ 3 যোগ কৰক৷
y=\frac{3}{2},x=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y+\frac{3}{2}x=3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে \frac{3}{2}x যোগ কৰক।
y-\frac{3}{2}x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{3}{2}x বিয়োগ কৰক৷
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{2}}{-\frac{3}{2}-\frac{3}{2}}&-\frac{\frac{3}{2}}{-\frac{3}{2}-\frac{3}{2}}\\-\frac{1}{-\frac{3}{2}-\frac{3}{2}}&\frac{1}{-\frac{3}{2}-\frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3\\\frac{1}{3}\times 3\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\1\end{matrix}\right)
গণনা কৰক৷
y=\frac{3}{2},x=1
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y+\frac{3}{2}x=3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে \frac{3}{2}x যোগ কৰক।
y-\frac{3}{2}x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{3}{2}x বিয়োগ কৰক৷
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y+\frac{3}{2}x+\frac{3}{2}x=3
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y+\frac{3}{2}x=3-ৰ পৰা y-\frac{3}{2}x=0 হৰণ কৰক৷
\frac{3}{2}x+\frac{3}{2}x=3
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
3x=3
\frac{3x}{2} লৈ \frac{3x}{2} যোগ কৰক৷
x=1
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y-\frac{3}{2}=0
y-\frac{3}{2}x=0-ত x-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{3}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{3}{2} যোগ কৰক৷
y=\frac{3}{2},x=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}