\left\{ \begin{array} { l } { x - 6 y = 3 } \\ { 2 x - 18 y = - 6 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=15
y=2
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x-6y=3,2x-18y=-6
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-6y=3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=6y+3
সমীকৰণৰ দুয়োটা দিশতে 6y যোগ কৰক৷
2\left(6y+3\right)-18y=-6
অন্য সমীকৰণত x-ৰ বাবে 6y+3 স্থানাপন কৰক, 2x-18y=-6৷
12y+6-18y=-6
2 বাৰ 6y+3 পুৰণ কৰক৷
-6y+6=-6
-18y লৈ 12y যোগ কৰক৷
-6y=-12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
y=2
-6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=6\times 2+3
x=6y+3-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=12+3
6 বাৰ 2 পুৰণ কৰক৷
x=15
12 লৈ 3 যোগ কৰক৷
x=15,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-6y=3,2x-18y=-6
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-6\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-18-\left(-6\times 2\right)}&-\frac{-6}{-18-\left(-6\times 2\right)}\\-\frac{2}{-18-\left(-6\times 2\right)}&\frac{1}{-18-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\\frac{1}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 3-\left(-6\right)\\\frac{1}{3}\times 3-\frac{1}{6}\left(-6\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\2\end{matrix}\right)
গণনা কৰক৷
x=15,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x-6y=3,2x-18y=-6
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2x+2\left(-6\right)y=2\times 3,2x-18y=-6
x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
2x-12y=6,2x-18y=-6
সৰলীকৰণ৷
2x-2x-12y+18y=6+6
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2x-12y=6-ৰ পৰা 2x-18y=-6 হৰণ কৰক৷
-12y+18y=6+6
-2x লৈ 2x যোগ কৰক৷ চৰ্তাৱলী 2x আৰু -2x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
6y=6+6
18y লৈ -12y যোগ কৰক৷
6y=12
6 লৈ 6 যোগ কৰক৷
y=2
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x-18\times 2=-6
2x-18y=-6-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x-36=-6
-18 বাৰ 2 পুৰণ কৰক৷
2x=30
সমীকৰণৰ দুয়োটা দিশতে 36 যোগ কৰক৷
x=15
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=15,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}