\left\{ \begin{array} { l } { x - 2 y = - 6 } \\ { 6 x + 3 y = 2 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=-\frac{14}{15}\approx -0.933333333
y = \frac{38}{15} = 2\frac{8}{15} \approx 2.533333333
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x-2y=-6,6x+3y=2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-2y=-6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=2y-6
সমীকৰণৰ দুয়োটা দিশতে 2y যোগ কৰক৷
6\left(2y-6\right)+3y=2
অন্য সমীকৰণত x-ৰ বাবে -6+2y স্থানাপন কৰক, 6x+3y=2৷
12y-36+3y=2
6 বাৰ -6+2y পুৰণ কৰক৷
15y-36=2
3y লৈ 12y যোগ কৰক৷
15y=38
সমীকৰণৰ দুয়োটা দিশতে 36 যোগ কৰক৷
y=\frac{38}{15}
15-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=2\times \frac{38}{15}-6
x=2y-6-ত y-ৰ বাবে \frac{38}{15}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{76}{15}-6
2 বাৰ \frac{38}{15} পুৰণ কৰক৷
x=-\frac{14}{15}
\frac{76}{15} লৈ -6 যোগ কৰক৷
x=-\frac{14}{15},y=\frac{38}{15}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-2y=-6,6x+3y=2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-2\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}1&-2\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
\left(\begin{matrix}1&-2\\6&3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&3\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\times 6\right)}&-\frac{-2}{3-\left(-2\times 6\right)}\\-\frac{6}{3-\left(-2\times 6\right)}&\frac{1}{3-\left(-2\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{15}\\-\frac{2}{5}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-6\right)+\frac{2}{15}\times 2\\-\frac{2}{5}\left(-6\right)+\frac{1}{15}\times 2\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{15}\\\frac{38}{15}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{14}{15},y=\frac{38}{15}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x-2y=-6,6x+3y=2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
6x+6\left(-2\right)y=6\left(-6\right),6x+3y=2
x আৰু 6x সমান কৰিবৰ বাবে, 6-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
6x-12y=-36,6x+3y=2
সৰলীকৰণ৷
6x-6x-12y-3y=-36-2
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x-12y=-36-ৰ পৰা 6x+3y=2 হৰণ কৰক৷
-12y-3y=-36-2
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-15y=-36-2
-3y লৈ -12y যোগ কৰক৷
-15y=-38
-2 লৈ -36 যোগ কৰক৷
y=\frac{38}{15}
-15-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
6x+3\times \frac{38}{15}=2
6x+3y=2-ত y-ৰ বাবে \frac{38}{15}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
6x+\frac{38}{5}=2
3 বাৰ \frac{38}{15} পুৰণ কৰক৷
6x=-\frac{28}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{38}{5} বিয়োগ কৰক৷
x=-\frac{14}{15}
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{14}{15},y=\frac{38}{15}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}