মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-2\left(3y-1\right)=-4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x-6y+2=-4
-2 বাৰ 3y-1 পুৰণ কৰক৷
x-6y=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
x=6y-6
সমীকৰণৰ দুয়োটা দিশতে 6y যোগ কৰক৷
-\left(-\left(6y-6\right)-7\right)+\frac{2}{3}y=1
অন্য সমীকৰণত x-ৰ বাবে -6+6y স্থানাপন কৰক, -\left(-x-7\right)+\frac{2}{3}y=1৷
-\left(-6y+6-7\right)+\frac{2}{3}y=1
-1 বাৰ -6+6y পুৰণ কৰক৷
-\left(-6y-1\right)+\frac{2}{3}y=1
-7 লৈ 6 যোগ কৰক৷
6y+1+\frac{2}{3}y=1
-1 বাৰ -6y-1 পুৰণ কৰক৷
\frac{20}{3}y+1=1
\frac{2y}{3} লৈ 6y যোগ কৰক৷
\frac{20}{3}y=0
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
y=0
\frac{20}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-6
x=6y-6-ত y-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-6,y=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
x-2\left(3y-1\right)=-4
প্ৰথম সমীকৰণটোক মান্য ৰূপত ৰাখিবলৈ সৰলীকৰণ কৰক
x-6y+2=-4
-2 বাৰ 3y-1 পুৰণ কৰক৷
x-6y=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
-\left(-x-7\right)+\frac{2}{3}y=1
দ্বিতীয় সমীকৰণটোক মান্য ৰূপত ৰাখিবলৈ সৰলীকৰণ কৰক
x+7+\frac{2}{3}y=1
-1 বাৰ -x-7 পুৰণ কৰক৷
x+\frac{2}{3}y=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 7 বিয়োগ কৰক৷
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-6\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{3}}{\frac{2}{3}-\left(-6\right)}&-\frac{-6}{\frac{2}{3}-\left(-6\right)}\\-\frac{1}{\frac{2}{3}-\left(-6\right)}&\frac{1}{\frac{2}{3}-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{9}{10}\\-\frac{3}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-6\right)+\frac{9}{10}\left(-6\right)\\-\frac{3}{20}\left(-6\right)+\frac{3}{20}\left(-6\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
গণনা কৰক৷
x=-6,y=0
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷