মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x-\frac{3}{4}y=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{3}{4}y বিয়োগ কৰক৷
y-\frac{8}{9}x=-4
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{8}{9}x বিয়োগ কৰক৷
x-\frac{3}{4}y=0,-\frac{8}{9}x+y=-4
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-\frac{3}{4}y=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=\frac{3}{4}y
সমীকৰণৰ দুয়োটা দিশতে \frac{3y}{4} যোগ কৰক৷
-\frac{8}{9}\times \frac{3}{4}y+y=-4
অন্য সমীকৰণত x-ৰ বাবে \frac{3y}{4} স্থানাপন কৰক, -\frac{8}{9}x+y=-4৷
-\frac{2}{3}y+y=-4
-\frac{8}{9} বাৰ \frac{3y}{4} পুৰণ কৰক৷
\frac{1}{3}y=-4
y লৈ -\frac{2y}{3} যোগ কৰক৷
y=-12
3-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=\frac{3}{4}\left(-12\right)
x=\frac{3}{4}y-ত y-ৰ বাবে -12-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-9
\frac{3}{4} বাৰ -12 পুৰণ কৰক৷
x=-9,y=-12
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-\frac{3}{4}y=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{3}{4}y বিয়োগ কৰক৷
y-\frac{8}{9}x=-4
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{8}{9}x বিয়োগ কৰক৷
x-\frac{3}{4}y=0,-\frac{8}{9}x+y=-4
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-\frac{3}{4}\\-\frac{8}{9}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-4\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-\frac{3}{4}\\-\frac{8}{9}&1\end{matrix}\right))\left(\begin{matrix}1&-\frac{3}{4}\\-\frac{8}{9}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{3}{4}\\-\frac{8}{9}&1\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
\left(\begin{matrix}1&-\frac{3}{4}\\-\frac{8}{9}&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{3}{4}\\-\frac{8}{9}&1\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{3}{4}\\-\frac{8}{9}&1\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-\frac{3}{4}\left(-\frac{8}{9}\right)\right)}&-\frac{-\frac{3}{4}}{1-\left(-\frac{3}{4}\left(-\frac{8}{9}\right)\right)}\\-\frac{-\frac{8}{9}}{1-\left(-\frac{3}{4}\left(-\frac{8}{9}\right)\right)}&\frac{1}{1-\left(-\frac{3}{4}\left(-\frac{8}{9}\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&\frac{9}{4}\\\frac{8}{3}&3\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\left(-4\right)\\3\left(-4\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
গণনা কৰক৷
x=-9,y=-12
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x-\frac{3}{4}y=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{3}{4}y বিয়োগ কৰক৷
y-\frac{8}{9}x=-4
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{8}{9}x বিয়োগ কৰক৷
x-\frac{3}{4}y=0,-\frac{8}{9}x+y=-4
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-\frac{8}{9}x-\frac{8}{9}\left(-\frac{3}{4}\right)y=0,-\frac{8}{9}x+y=-4
x আৰু -\frac{8x}{9} সমান কৰিবৰ বাবে, -\frac{8}{9}-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
-\frac{8}{9}x+\frac{2}{3}y=0,-\frac{8}{9}x+y=-4
সৰলীকৰণ৷
-\frac{8}{9}x+\frac{8}{9}x+\frac{2}{3}y-y=4
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -\frac{8}{9}x+\frac{2}{3}y=0-ৰ পৰা -\frac{8}{9}x+y=-4 হৰণ কৰক৷
\frac{2}{3}y-y=4
\frac{8x}{9} লৈ -\frac{8x}{9} যোগ কৰক৷ চৰ্তাৱলী -\frac{8x}{9} আৰু \frac{8x}{9} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{1}{3}y=4
-y লৈ \frac{2y}{3} যোগ কৰক৷
y=-12
-3-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
-\frac{8}{9}x-12=-4
-\frac{8}{9}x+y=-4-ত y-ৰ বাবে -12-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-\frac{8}{9}x=8
সমীকৰণৰ দুয়োটা দিশতে 12 যোগ কৰক৷
x=-9
-\frac{8}{9}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-9,y=-12
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷