\left\{ \begin{array} { l } { x + y = 45 } \\ { 18 x + 120 y = 6000 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x = -\frac{100}{17} = -5\frac{15}{17} \approx -5.882352941
y = \frac{865}{17} = 50\frac{15}{17} \approx 50.882352941
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x+y=45,18x+120y=6000
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=45
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+45
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
18\left(-y+45\right)+120y=6000
অন্য সমীকৰণত x-ৰ বাবে -y+45 স্থানাপন কৰক, 18x+120y=6000৷
-18y+810+120y=6000
18 বাৰ -y+45 পুৰণ কৰক৷
102y+810=6000
120y লৈ -18y যোগ কৰক৷
102y=5190
সমীকৰণৰ দুয়োটা দিশৰ পৰা 810 বিয়োগ কৰক৷
y=\frac{865}{17}
102-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{865}{17}+45
x=-y+45-ত y-ৰ বাবে \frac{865}{17}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{100}{17}
-\frac{865}{17} লৈ 45 যোগ কৰক৷
x=-\frac{100}{17},y=\frac{865}{17}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=45,18x+120y=6000
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\18&120\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\6000\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}1&1\\18&120\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
\left(\begin{matrix}1&1\\18&120\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{120}{120-18}&-\frac{1}{120-18}\\-\frac{18}{120-18}&\frac{1}{120-18}\end{matrix}\right)\left(\begin{matrix}45\\6000\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{17}&-\frac{1}{102}\\-\frac{3}{17}&\frac{1}{102}\end{matrix}\right)\left(\begin{matrix}45\\6000\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{17}\times 45-\frac{1}{102}\times 6000\\-\frac{3}{17}\times 45+\frac{1}{102}\times 6000\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{100}{17}\\\frac{865}{17}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{100}{17},y=\frac{865}{17}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=45,18x+120y=6000
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
18x+18y=18\times 45,18x+120y=6000
x আৰু 18x সমান কৰিবৰ বাবে, 18-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
18x+18y=810,18x+120y=6000
সৰলীকৰণ৷
18x-18x+18y-120y=810-6000
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 18x+18y=810-ৰ পৰা 18x+120y=6000 হৰণ কৰক৷
18y-120y=810-6000
-18x লৈ 18x যোগ কৰক৷ চৰ্তাৱলী 18x আৰু -18x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-102y=810-6000
-120y লৈ 18y যোগ কৰক৷
-102y=-5190
-6000 লৈ 810 যোগ কৰক৷
y=\frac{865}{17}
-102-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
18x+120\times \frac{865}{17}=6000
18x+120y=6000-ত y-ৰ বাবে \frac{865}{17}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
18x+\frac{103800}{17}=6000
120 বাৰ \frac{865}{17} পুৰণ কৰক৷
18x=-\frac{1800}{17}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{103800}{17} বিয়োগ কৰক৷
x=-\frac{100}{17}
18-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{100}{17},y=\frac{865}{17}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}