মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=3,-x+y=\frac{3}{4}
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+3
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
-\left(-y+3\right)+y=\frac{3}{4}
অন্য সমীকৰণত x-ৰ বাবে -y+3 স্থানাপন কৰক, -x+y=\frac{3}{4}৷
y-3+y=\frac{3}{4}
-1 বাৰ -y+3 পুৰণ কৰক৷
2y-3=\frac{3}{4}
y লৈ y যোগ কৰক৷
2y=\frac{15}{4}
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
y=\frac{15}{8}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{15}{8}+3
x=-y+3-ত y-ৰ বাবে \frac{15}{8}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{9}{8}
-\frac{15}{8} লৈ 3 যোগ কৰক৷
x=\frac{9}{8},y=\frac{15}{8}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=3,-x+y=\frac{3}{4}
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times \frac{3}{4}\\\frac{1}{2}\times 3+\frac{1}{2}\times \frac{3}{4}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8}\\\frac{15}{8}\end{matrix}\right)
গণনা কৰক৷
x=\frac{9}{8},y=\frac{15}{8}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=3,-x+y=\frac{3}{4}
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
x+x+y-y=3-\frac{3}{4}
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি x+y=3-ৰ পৰা -x+y=\frac{3}{4} হৰণ কৰক৷
x+x=3-\frac{3}{4}
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
2x=3-\frac{3}{4}
x লৈ x যোগ কৰক৷
2x=\frac{9}{4}
-\frac{3}{4} লৈ 3 যোগ কৰক৷
x=\frac{9}{8}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-\frac{9}{8}+y=\frac{3}{4}
-x+y=\frac{3}{4}-ত x-ৰ বাবে \frac{9}{8}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{15}{8}
সমীকৰণৰ দুয়োটা দিশতে \frac{9}{8} যোগ কৰক৷
x=\frac{9}{8},y=\frac{15}{8}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷