মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=27,7x-3y=9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=27
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+27
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
7\left(-y+27\right)-3y=9
অন্য সমীকৰণত x-ৰ বাবে -y+27 স্থানাপন কৰক, 7x-3y=9৷
-7y+189-3y=9
7 বাৰ -y+27 পুৰণ কৰক৷
-10y+189=9
-3y লৈ -7y যোগ কৰক৷
-10y=-180
সমীকৰণৰ দুয়োটা দিশৰ পৰা 189 বিয়োগ কৰক৷
y=18
-10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-18+27
x=-y+27-ত y-ৰ বাবে 18-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=9
-18 লৈ 27 যোগ কৰক৷
x=9,y=18
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=27,7x-3y=9
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\7&-3\end{matrix}\right))\left(\begin{matrix}1&1\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
\left(\begin{matrix}1&1\\7&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-7}&-\frac{1}{-3-7}\\-\frac{7}{-3-7}&\frac{1}{-3-7}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{10}\\\frac{7}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 27+\frac{1}{10}\times 9\\\frac{7}{10}\times 27-\frac{1}{10}\times 9\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\18\end{matrix}\right)
গণনা কৰক৷
x=9,y=18
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=27,7x-3y=9
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
7x+7y=7\times 27,7x-3y=9
x আৰু 7x সমান কৰিবৰ বাবে, 7-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
7x+7y=189,7x-3y=9
সৰলীকৰণ৷
7x-7x+7y+3y=189-9
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 7x+7y=189-ৰ পৰা 7x-3y=9 হৰণ কৰক৷
7y+3y=189-9
-7x লৈ 7x যোগ কৰক৷ চৰ্তাৱলী 7x আৰু -7x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
10y=189-9
3y লৈ 7y যোগ কৰক৷
10y=180
-9 লৈ 189 যোগ কৰক৷
y=18
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
7x-3\times 18=9
7x-3y=9-ত y-ৰ বাবে 18-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
7x-54=9
-3 বাৰ 18 পুৰণ কৰক৷
7x=63
সমীকৰণৰ দুয়োটা দিশতে 54 যোগ কৰক৷
x=9
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=9,y=18
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷