মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=250,\frac{1}{19}x+\frac{1}{10}y=16
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=250
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+250
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
\frac{1}{19}\left(-y+250\right)+\frac{1}{10}y=16
অন্য সমীকৰণত x-ৰ বাবে -y+250 স্থানাপন কৰক, \frac{1}{19}x+\frac{1}{10}y=16৷
-\frac{1}{19}y+\frac{250}{19}+\frac{1}{10}y=16
\frac{1}{19} বাৰ -y+250 পুৰণ কৰক৷
\frac{9}{190}y+\frac{250}{19}=16
\frac{y}{10} লৈ -\frac{y}{19} যোগ কৰক৷
\frac{9}{190}y=\frac{54}{19}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{250}{19} বিয়োগ কৰক৷
y=60
\frac{9}{190}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-60+250
x=-y+250-ত y-ৰ বাবে 60-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=190
-60 লৈ 250 যোগ কৰক৷
x=190,y=60
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=250,\frac{1}{19}x+\frac{1}{10}y=16
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\\frac{1}{19}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}250\\16\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\\frac{1}{19}&\frac{1}{10}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{1}{19}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{19}&\frac{1}{10}\end{matrix}\right))\left(\begin{matrix}250\\16\end{matrix}\right)
\left(\begin{matrix}1&1\\\frac{1}{19}&\frac{1}{10}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{19}&\frac{1}{10}\end{matrix}\right))\left(\begin{matrix}250\\16\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{19}&\frac{1}{10}\end{matrix}\right))\left(\begin{matrix}250\\16\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{10}}{\frac{1}{10}-\frac{1}{19}}&-\frac{1}{\frac{1}{10}-\frac{1}{19}}\\-\frac{\frac{1}{19}}{\frac{1}{10}-\frac{1}{19}}&\frac{1}{\frac{1}{10}-\frac{1}{19}}\end{matrix}\right)\left(\begin{matrix}250\\16\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{9}&-\frac{190}{9}\\-\frac{10}{9}&\frac{190}{9}\end{matrix}\right)\left(\begin{matrix}250\\16\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{9}\times 250-\frac{190}{9}\times 16\\-\frac{10}{9}\times 250+\frac{190}{9}\times 16\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}190\\60\end{matrix}\right)
গণনা কৰক৷
x=190,y=60
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=250,\frac{1}{19}x+\frac{1}{10}y=16
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
\frac{1}{19}x+\frac{1}{19}y=\frac{1}{19}\times 250,\frac{1}{19}x+\frac{1}{10}y=16
x আৰু \frac{x}{19} সমান কৰিবৰ বাবে, \frac{1}{19}-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
\frac{1}{19}x+\frac{1}{19}y=\frac{250}{19},\frac{1}{19}x+\frac{1}{10}y=16
সৰলীকৰণ৷
\frac{1}{19}x-\frac{1}{19}x+\frac{1}{19}y-\frac{1}{10}y=\frac{250}{19}-16
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি \frac{1}{19}x+\frac{1}{19}y=\frac{250}{19}-ৰ পৰা \frac{1}{19}x+\frac{1}{10}y=16 হৰণ কৰক৷
\frac{1}{19}y-\frac{1}{10}y=\frac{250}{19}-16
-\frac{x}{19} লৈ \frac{x}{19} যোগ কৰক৷ চৰ্তাৱলী \frac{x}{19} আৰু -\frac{x}{19} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{9}{190}y=\frac{250}{19}-16
-\frac{y}{10} লৈ \frac{y}{19} যোগ কৰক৷
-\frac{9}{190}y=-\frac{54}{19}
-16 লৈ \frac{250}{19} যোগ কৰক৷
y=60
-\frac{9}{190}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
\frac{1}{19}x+\frac{1}{10}\times 60=16
\frac{1}{19}x+\frac{1}{10}y=16-ত y-ৰ বাবে 60-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
\frac{1}{19}x+6=16
\frac{1}{10} বাৰ 60 পুৰণ কৰক৷
\frac{1}{19}x=10
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=190
19-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=190,y=60
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷