মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+4y=-1,2x-4y=4
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+4y=-1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-4y-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
2\left(-4y-1\right)-4y=4
অন্য সমীকৰণত x-ৰ বাবে -4y-1 স্থানাপন কৰক, 2x-4y=4৷
-8y-2-4y=4
2 বাৰ -4y-1 পুৰণ কৰক৷
-12y-2=4
-4y লৈ -8y যোগ কৰক৷
-12y=6
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
y=-\frac{1}{2}
-12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-4\left(-\frac{1}{2}\right)-1
x=-4y-1-ত y-ৰ বাবে -\frac{1}{2}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=2-1
-4 বাৰ -\frac{1}{2} পুৰণ কৰক৷
x=1
2 লৈ -1 যোগ কৰক৷
x=1,y=-\frac{1}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+4y=-1,2x-4y=4
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\4\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-4\times 2}&-\frac{4}{-4-4\times 2}\\-\frac{2}{-4-4\times 2}&\frac{1}{-4-4\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{6}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)+\frac{1}{3}\times 4\\\frac{1}{6}\left(-1\right)-\frac{1}{12}\times 4\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{1}{2}\end{matrix}\right)
গণনা কৰক৷
x=1,y=-\frac{1}{2}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+4y=-1,2x-4y=4
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2x+2\times 4y=2\left(-1\right),2x-4y=4
x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
2x+8y=-2,2x-4y=4
সৰলীকৰণ৷
2x-2x+8y+4y=-2-4
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2x+8y=-2-ৰ পৰা 2x-4y=4 হৰণ কৰক৷
8y+4y=-2-4
-2x লৈ 2x যোগ কৰক৷ চৰ্তাৱলী 2x আৰু -2x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
12y=-2-4
4y লৈ 8y যোগ কৰক৷
12y=-6
-4 লৈ -2 যোগ কৰক৷
y=-\frac{1}{2}
12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x-4\left(-\frac{1}{2}\right)=4
2x-4y=4-ত y-ৰ বাবে -\frac{1}{2}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+2=4
-4 বাৰ -\frac{1}{2} পুৰণ কৰক৷
2x=2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
x=1
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=-\frac{1}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷