\left\{ \begin{array} { l } { x + 2 y = 7 } \\ { y - x = 1 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x+2y=7,-x+y=1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+2y=7
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-2y+7
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
-\left(-2y+7\right)+y=1
অন্য সমীকৰণত x-ৰ বাবে -2y+7 স্থানাপন কৰক, -x+y=1৷
2y-7+y=1
-1 বাৰ -2y+7 পুৰণ কৰক৷
3y-7=1
y লৈ 2y যোগ কৰক৷
3y=8
সমীকৰণৰ দুয়োটা দিশতে 7 যোগ কৰক৷
y=\frac{8}{3}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2\times \frac{8}{3}+7
x=-2y+7-ত y-ৰ বাবে \frac{8}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{16}{3}+7
-2 বাৰ \frac{8}{3} পুৰণ কৰক৷
x=\frac{5}{3}
-\frac{16}{3} লৈ 7 যোগ কৰক৷
x=\frac{5}{3},y=\frac{8}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+2y=7,-x+y=1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-1\right)}&-\frac{2}{1-2\left(-1\right)}\\-\frac{-1}{1-2\left(-1\right)}&\frac{1}{1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 7-\frac{2}{3}\\\frac{1}{3}\times 7+\frac{1}{3}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{8}{3}\end{matrix}\right)
গণনা কৰক৷
x=\frac{5}{3},y=\frac{8}{3}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+2y=7,-x+y=1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-x-2y=-7,-x+y=1
x আৰু -x সমান কৰিবৰ বাবে, -1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
-x+x-2y-y=-7-1
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -x-2y=-7-ৰ পৰা -x+y=1 হৰণ কৰক৷
-2y-y=-7-1
x লৈ -x যোগ কৰক৷ চৰ্তাৱলী -x আৰু x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-3y=-7-1
-y লৈ -2y যোগ কৰক৷
-3y=-8
-1 লৈ -7 যোগ কৰক৷
y=\frac{8}{3}
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-x+\frac{8}{3}=1
-x+y=1-ত y-ৰ বাবে \frac{8}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-x=-\frac{5}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{8}{3} বিয়োগ কৰক৷
x=\frac{5}{3}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{3},y=\frac{8}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}