মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
Tick mark Image
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=a
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}+y^{2}=9
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+y=a
সমান চিনৰ বাওঁ দিশত থকা x পৃথক কৰি xৰ বাবে x+y=a সমাধান কৰক৷
x=-y+a
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
y^{2}+\left(-y+a\right)^{2}=9
অন্য সমীকৰণত x-ৰ বাবে -y+a স্থানাপন কৰক, y^{2}+x^{2}=9৷
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
বৰ্গ -y+a৷
2y^{2}+\left(-2a\right)y+a^{2}=9
y^{2} লৈ y^{2} যোগ কৰক৷
2y^{2}+\left(-2a\right)y+a^{2}-9=0
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9 বিয়োগ কৰক৷
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1+1\left(-1\right)^{2}, b-ৰ বাবে 1\left(-1\right)\times 2a, c-ৰ বাবে a^{2}-9 চাবষ্টিটিউট৷
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
বৰ্গ 1\left(-1\right)\times 2a৷
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
-4 বাৰ 1+1\left(-1\right)^{2} পুৰণ কৰক৷
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
-8 বাৰ a^{2}-9 পুৰণ কৰক৷
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
-8a^{2}+72 লৈ 4a^{2} যোগ কৰক৷
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
-4a^{2}+72-ৰ বৰ্গমূল লওক৷
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
2 বাৰ 1+1\left(-1\right)^{2} পুৰণ কৰক৷
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ y=\frac{2a±2\sqrt{18-a^{2}}}{4} সমাধান কৰক৷ 2\sqrt{-a^{2}+18} লৈ 2a যোগ কৰক৷
y=\frac{\sqrt{18-a^{2}}+a}{2}
4-ৰ দ্বাৰা 2a+2\sqrt{-a^{2}+18} হৰণ কৰক৷
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ y=\frac{2a±2\sqrt{18-a^{2}}}{4} সমাধান কৰক৷ 2a-ৰ পৰা 2\sqrt{-a^{2}+18} বিয়োগ কৰক৷
y=\frac{-\sqrt{18-a^{2}}+a}{2}
4-ৰ দ্বাৰা 2a-2\sqrt{-a^{2}+18} হৰণ কৰক৷
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
y-ৰ বাবে দুটা সমাধান আছে: \frac{a+\sqrt{-a^{2}+18}}{2} আৰু \frac{a-\sqrt{-a^{2}+18}}{2}৷ দুয়োটা সমীকৰণকে সন্তুষ্ট কৰিবৰ বাবে অনুৰূপ সমাধান বিচাৰিবলৈ সমীকৰণ x=-y+a x -ত y-ৰ বাবে \frac{a+\sqrt{-a^{2}+18}}{2} চাবষ্টিটিউট কৰক৷
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
সমীকৰণ x=-y+a-ত y-ৰ বাবে \frac{a-\sqrt{-a^{2}+18}}{2} চাবষ্টিটিউট কৰক আৰু x দুয়োটা সমীকৰণকে সন্তুষ্ট কৰিবৰ বাবে অনুৰূপ সমাধান বিচাৰিবলৈ সমাধান কৰক৷
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=a
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}+y^{2}=9
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+y=a,y^{2}+x^{2}=9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=a
সমান চিনৰ বাওঁ দিশত থকা x পৃথক কৰি xৰ বাবে x+y=a সমাধান কৰক৷
x=-y+a
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
y^{2}+\left(-y+a\right)^{2}=9
অন্য সমীকৰণত x-ৰ বাবে -y+a স্থানাপন কৰক, y^{2}+x^{2}=9৷
y^{2}+y^{2}+\left(-2a\right)y+a^{2}=9
বৰ্গ -y+a৷
2y^{2}+\left(-2a\right)y+a^{2}=9
y^{2} লৈ y^{2} যোগ কৰক৷
2y^{2}+\left(-2a\right)y+a^{2}-9=0
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9 বিয়োগ কৰক৷
y=\frac{-\left(-2a\right)±\sqrt{\left(-2a\right)^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1+1\left(-1\right)^{2}, b-ৰ বাবে 1\left(-1\right)\times 2a, c-ৰ বাবে a^{2}-9 চাবষ্টিটিউট৷
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-4\times 2\left(a^{2}-9\right)}}{2\times 2}
বৰ্গ 1\left(-1\right)\times 2a৷
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}-8\left(a^{2}-9\right)}}{2\times 2}
-4 বাৰ 1+1\left(-1\right)^{2} পুৰণ কৰক৷
y=\frac{-\left(-2a\right)±\sqrt{4a^{2}+72-8a^{2}}}{2\times 2}
-8 বাৰ a^{2}-9 পুৰণ কৰক৷
y=\frac{-\left(-2a\right)±\sqrt{72-4a^{2}}}{2\times 2}
-8a^{2}+72 লৈ 4a^{2} যোগ কৰক৷
y=\frac{-\left(-2a\right)±2\sqrt{18-a^{2}}}{2\times 2}
-4a^{2}+72-ৰ বৰ্গমূল লওক৷
y=\frac{2a±2\sqrt{18-a^{2}}}{4}
2 বাৰ 1+1\left(-1\right)^{2} পুৰণ কৰক৷
y=\frac{2\sqrt{18-a^{2}}+2a}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ y=\frac{2a±2\sqrt{18-a^{2}}}{4} সমাধান কৰক৷ 2\sqrt{-a^{2}+18} লৈ 2a যোগ কৰক৷
y=\frac{\sqrt{18-a^{2}}+a}{2}
4-ৰ দ্বাৰা 2a+2\sqrt{-a^{2}+18} হৰণ কৰক৷
y=\frac{-2\sqrt{18-a^{2}}+2a}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ y=\frac{2a±2\sqrt{18-a^{2}}}{4} সমাধান কৰক৷ 2a-ৰ পৰা 2\sqrt{-a^{2}+18} বিয়োগ কৰক৷
y=\frac{-\sqrt{18-a^{2}}+a}{2}
4-ৰ দ্বাৰা 2a-2\sqrt{-a^{2}+18} হৰণ কৰক৷
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a
y-ৰ বাবে দুটা সমাধান আছে: \frac{a+\sqrt{-a^{2}+18}}{2} আৰু \frac{a-\sqrt{-a^{2}+18}}{2}৷ দুয়োটা সমীকৰণকে সন্তুষ্ট কৰিবৰ বাবে অনুৰূপ সমাধান বিচাৰিবলৈ সমীকৰণ x=-y+a x -ত y-ৰ বাবে \frac{a+\sqrt{-a^{2}+18}}{2} চাবষ্টিটিউট কৰক৷
x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a
সমীকৰণ x=-y+a-ত y-ৰ বাবে \frac{a-\sqrt{-a^{2}+18}}{2} চাবষ্টিটিউট কৰক আৰু x দুয়োটা সমীকৰণকে সন্তুষ্ট কৰিবৰ বাবে অনুৰূপ সমাধান বিচাৰিবলৈ সমাধান কৰক৷
x=-\frac{\sqrt{18-a^{2}}+a}{2}+a,y=\frac{\sqrt{18-a^{2}}+a}{2}\text{ or }x=-\frac{-\sqrt{18-a^{2}}+a}{2}+a,y=\frac{-\sqrt{18-a^{2}}+a}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷