মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

7x-8y=9,4x-13y=-10
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
7x-8y=9
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
7x=8y+9
সমীকৰণৰ দুয়োটা দিশতে 8y যোগ কৰক৷
x=\frac{1}{7}\left(8y+9\right)
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{8}{7}y+\frac{9}{7}
\frac{1}{7} বাৰ 8y+9 পুৰণ কৰক৷
4\left(\frac{8}{7}y+\frac{9}{7}\right)-13y=-10
অন্য সমীকৰণত x-ৰ বাবে \frac{8y+9}{7} স্থানাপন কৰক, 4x-13y=-10৷
\frac{32}{7}y+\frac{36}{7}-13y=-10
4 বাৰ \frac{8y+9}{7} পুৰণ কৰক৷
-\frac{59}{7}y+\frac{36}{7}=-10
-13y লৈ \frac{32y}{7} যোগ কৰক৷
-\frac{59}{7}y=-\frac{106}{7}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{36}{7} বিয়োগ কৰক৷
y=\frac{106}{59}
-\frac{59}{7}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{8}{7}\times \frac{106}{59}+\frac{9}{7}
x=\frac{8}{7}y+\frac{9}{7}-ত y-ৰ বাবে \frac{106}{59}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{848}{413}+\frac{9}{7}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{8}{7} বাৰ \frac{106}{59} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{197}{59}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{848}{413} লৈ \frac{9}{7} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{197}{59},y=\frac{106}{59}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
7x-8y=9,4x-13y=-10
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{7\left(-13\right)-\left(-8\times 4\right)}&-\frac{-8}{7\left(-13\right)-\left(-8\times 4\right)}\\-\frac{4}{7\left(-13\right)-\left(-8\times 4\right)}&\frac{7}{7\left(-13\right)-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}&-\frac{8}{59}\\\frac{4}{59}&-\frac{7}{59}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}\times 9-\frac{8}{59}\left(-10\right)\\\frac{4}{59}\times 9-\frac{7}{59}\left(-10\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{197}{59}\\\frac{106}{59}\end{matrix}\right)
গণনা কৰক৷
x=\frac{197}{59},y=\frac{106}{59}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
7x-8y=9,4x-13y=-10
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4\times 7x+4\left(-8\right)y=4\times 9,7\times 4x+7\left(-13\right)y=7\left(-10\right)
7x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 7-ৰ দ্বাৰা পুৰণ কৰক৷
28x-32y=36,28x-91y=-70
সৰলীকৰণ৷
28x-28x-32y+91y=36+70
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 28x-32y=36-ৰ পৰা 28x-91y=-70 হৰণ কৰক৷
-32y+91y=36+70
-28x লৈ 28x যোগ কৰক৷ চৰ্তাৱলী 28x আৰু -28x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
59y=36+70
91y লৈ -32y যোগ কৰক৷
59y=106
70 লৈ 36 যোগ কৰক৷
y=\frac{106}{59}
59-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x-13\times \frac{106}{59}=-10
4x-13y=-10-ত y-ৰ বাবে \frac{106}{59}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x-\frac{1378}{59}=-10
-13 বাৰ \frac{106}{59} পুৰণ কৰক৷
4x=\frac{788}{59}
সমীকৰণৰ দুয়োটা দিশতে \frac{1378}{59} যোগ কৰক৷
x=\frac{197}{59}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{197}{59},y=\frac{106}{59}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷