মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

7x+3y=43,4x-3y=67
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
7x+3y=43
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
7x=-3y+43
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{7}\left(-3y+43\right)
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{7}y+\frac{43}{7}
\frac{1}{7} বাৰ -3y+43 পুৰণ কৰক৷
4\left(-\frac{3}{7}y+\frac{43}{7}\right)-3y=67
অন্য সমীকৰণত x-ৰ বাবে \frac{-3y+43}{7} স্থানাপন কৰক, 4x-3y=67৷
-\frac{12}{7}y+\frac{172}{7}-3y=67
4 বাৰ \frac{-3y+43}{7} পুৰণ কৰক৷
-\frac{33}{7}y+\frac{172}{7}=67
-3y লৈ -\frac{12y}{7} যোগ কৰক৷
-\frac{33}{7}y=\frac{297}{7}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{172}{7} বিয়োগ কৰক৷
y=-9
-\frac{33}{7}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{7}\left(-9\right)+\frac{43}{7}
x=-\frac{3}{7}y+\frac{43}{7}-ত y-ৰ বাবে -9-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{27+43}{7}
-\frac{3}{7} বাৰ -9 পুৰণ কৰক৷
x=10
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{27}{7} লৈ \frac{43}{7} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=10,y=-9
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
7x+3y=43,4x-3y=67
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}7&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}43\\67\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}7&3\\4&-3\end{matrix}\right))\left(\begin{matrix}7&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\4&-3\end{matrix}\right))\left(\begin{matrix}43\\67\end{matrix}\right)
\left(\begin{matrix}7&3\\4&-3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\4&-3\end{matrix}\right))\left(\begin{matrix}43\\67\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\4&-3\end{matrix}\right))\left(\begin{matrix}43\\67\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7\left(-3\right)-3\times 4}&-\frac{3}{7\left(-3\right)-3\times 4}\\-\frac{4}{7\left(-3\right)-3\times 4}&\frac{7}{7\left(-3\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}43\\67\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{1}{11}\\\frac{4}{33}&-\frac{7}{33}\end{matrix}\right)\left(\begin{matrix}43\\67\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 43+\frac{1}{11}\times 67\\\frac{4}{33}\times 43-\frac{7}{33}\times 67\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-9\end{matrix}\right)
গণনা কৰক৷
x=10,y=-9
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
7x+3y=43,4x-3y=67
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4\times 7x+4\times 3y=4\times 43,7\times 4x+7\left(-3\right)y=7\times 67
7x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 7-ৰ দ্বাৰা পুৰণ কৰক৷
28x+12y=172,28x-21y=469
সৰলীকৰণ৷
28x-28x+12y+21y=172-469
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 28x+12y=172-ৰ পৰা 28x-21y=469 হৰণ কৰক৷
12y+21y=172-469
-28x লৈ 28x যোগ কৰক৷ চৰ্তাৱলী 28x আৰু -28x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
33y=172-469
21y লৈ 12y যোগ কৰক৷
33y=-297
-469 লৈ 172 যোগ কৰক৷
y=-9
33-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x-3\left(-9\right)=67
4x-3y=67-ত y-ৰ বাবে -9-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x+27=67
-3 বাৰ -9 পুৰণ কৰক৷
4x=40
সমীকৰণৰ দুয়োটা দিশৰ পৰা 27 বিয়োগ কৰক৷
x=10
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=10,y=-9
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷