\left\{ \begin{array} { l } { 5 y + 2 x = 5 } \\ { y + 2 x = 5 } \end{array} \right.
y, x-ৰ বাবে সমাধান কৰক
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
y=0
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
5y+2x=5,y+2x=5
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5y+2x=5
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
5y=-2x+5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
y=\frac{1}{5}\left(-2x+5\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-\frac{2}{5}x+1
\frac{1}{5} বাৰ -2x+5 পুৰণ কৰক৷
-\frac{2}{5}x+1+2x=5
অন্য সমীকৰণত y-ৰ বাবে -\frac{2x}{5}+1 স্থানাপন কৰক, y+2x=5৷
\frac{8}{5}x+1=5
2x লৈ -\frac{2x}{5} যোগ কৰক৷
\frac{8}{5}x=4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x=\frac{5}{2}
\frac{8}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
y=-\frac{2}{5}\times \frac{5}{2}+1
y=-\frac{2}{5}x+1-ত x-ৰ বাবে \frac{5}{2}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-1+1
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{2}{5} বাৰ \frac{5}{2} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
y=0
-1 লৈ 1 যোগ কৰক৷
y=0,x=\frac{5}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5y+2x=5,y+2x=5
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
\left(\begin{matrix}5&2\\1&2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-2}&-\frac{2}{5\times 2-2}\\-\frac{1}{5\times 2-2}&\frac{5}{5\times 2-2}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\-\frac{1}{8}&\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{4}\times 5\\-\frac{1}{8}\times 5+\frac{5}{8}\times 5\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\\frac{5}{2}\end{matrix}\right)
গণনা কৰক৷
y=0,x=\frac{5}{2}
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
5y+2x=5,y+2x=5
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5y-y+2x-2x=5-5
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 5y+2x=5-ৰ পৰা y+2x=5 হৰণ কৰক৷
5y-y=5-5
-2x লৈ 2x যোগ কৰক৷ চৰ্তাৱলী 2x আৰু -2x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
4y=5-5
-y লৈ 5y যোগ কৰক৷
4y=0
-5 লৈ 5 যোগ কৰক৷
y=0
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x=5
y+2x=5-ত y-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=0,x=\frac{5}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}