মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x-y=13,2x+3y=12
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-y=13
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=y+13
সমীকৰণৰ দুয়োটা দিশতে y যোগ কৰক৷
x=\frac{1}{5}\left(y+13\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{1}{5}y+\frac{13}{5}
\frac{1}{5} বাৰ y+13 পুৰণ কৰক৷
2\left(\frac{1}{5}y+\frac{13}{5}\right)+3y=12
অন্য সমীকৰণত x-ৰ বাবে \frac{13+y}{5} স্থানাপন কৰক, 2x+3y=12৷
\frac{2}{5}y+\frac{26}{5}+3y=12
2 বাৰ \frac{13+y}{5} পুৰণ কৰক৷
\frac{17}{5}y+\frac{26}{5}=12
3y লৈ \frac{2y}{5} যোগ কৰক৷
\frac{17}{5}y=\frac{34}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{26}{5} বিয়োগ কৰক৷
y=2
\frac{17}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{1}{5}\times 2+\frac{13}{5}
x=\frac{1}{5}y+\frac{13}{5}-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{2+13}{5}
\frac{1}{5} বাৰ 2 পুৰণ কৰক৷
x=3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{2}{5} লৈ \frac{13}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=3,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x-y=13,2x+3y=12
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\12\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-2\right)}&-\frac{-1}{5\times 3-\left(-2\right)}\\-\frac{2}{5\times 3-\left(-2\right)}&\frac{5}{5\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{1}{17}\\-\frac{2}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 13+\frac{1}{17}\times 12\\-\frac{2}{17}\times 13+\frac{5}{17}\times 12\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
গণনা কৰক৷
x=3,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x-y=13,2x+3y=12
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 5x+2\left(-1\right)y=2\times 13,5\times 2x+5\times 3y=5\times 12
5x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
10x-2y=26,10x+15y=60
সৰলীকৰণ৷
10x-10x-2y-15y=26-60
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 10x-2y=26-ৰ পৰা 10x+15y=60 হৰণ কৰক৷
-2y-15y=26-60
-10x লৈ 10x যোগ কৰক৷ চৰ্তাৱলী 10x আৰু -10x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-17y=26-60
-15y লৈ -2y যোগ কৰক৷
-17y=-34
-60 লৈ 26 যোগ কৰক৷
y=2
-17-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+3\times 2=12
2x+3y=12-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+6=12
3 বাৰ 2 পুৰণ কৰক৷
2x=6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=3
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=3,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷