\left\{ \begin{array} { l } { 5 x - 6 y = 34 } \\ { 11 x + 9 y = - 14 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=2
y=-4
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
5x-6y=34,11x+9y=-14
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-6y=34
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=6y+34
সমীকৰণৰ দুয়োটা দিশতে 6y যোগ কৰক৷
x=\frac{1}{5}\left(6y+34\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{6}{5}y+\frac{34}{5}
\frac{1}{5} বাৰ 6y+34 পুৰণ কৰক৷
11\left(\frac{6}{5}y+\frac{34}{5}\right)+9y=-14
অন্য সমীকৰণত x-ৰ বাবে \frac{6y+34}{5} স্থানাপন কৰক, 11x+9y=-14৷
\frac{66}{5}y+\frac{374}{5}+9y=-14
11 বাৰ \frac{6y+34}{5} পুৰণ কৰক৷
\frac{111}{5}y+\frac{374}{5}=-14
9y লৈ \frac{66y}{5} যোগ কৰক৷
\frac{111}{5}y=-\frac{444}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{374}{5} বিয়োগ কৰক৷
y=-4
\frac{111}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{6}{5}\left(-4\right)+\frac{34}{5}
x=\frac{6}{5}y+\frac{34}{5}-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-24+34}{5}
\frac{6}{5} বাৰ -4 পুৰণ কৰক৷
x=2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{24}{5} লৈ \frac{34}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=2,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x-6y=34,11x+9y=-14
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-6\\11&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}34\\-14\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}5&-6\\11&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}34\\-14\end{matrix}\right)
\left(\begin{matrix}5&-6\\11&9\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}34\\-14\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\11&9\end{matrix}\right))\left(\begin{matrix}34\\-14\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5\times 9-\left(-6\times 11\right)}&-\frac{-6}{5\times 9-\left(-6\times 11\right)}\\-\frac{11}{5\times 9-\left(-6\times 11\right)}&\frac{5}{5\times 9-\left(-6\times 11\right)}\end{matrix}\right)\left(\begin{matrix}34\\-14\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{37}&\frac{2}{37}\\-\frac{11}{111}&\frac{5}{111}\end{matrix}\right)\left(\begin{matrix}34\\-14\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{37}\times 34+\frac{2}{37}\left(-14\right)\\-\frac{11}{111}\times 34+\frac{5}{111}\left(-14\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
গণনা কৰক৷
x=2,y=-4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x-6y=34,11x+9y=-14
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
11\times 5x+11\left(-6\right)y=11\times 34,5\times 11x+5\times 9y=5\left(-14\right)
5x আৰু 11x সমান কৰিবৰ বাবে, 11-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
55x-66y=374,55x+45y=-70
সৰলীকৰণ৷
55x-55x-66y-45y=374+70
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 55x-66y=374-ৰ পৰা 55x+45y=-70 হৰণ কৰক৷
-66y-45y=374+70
-55x লৈ 55x যোগ কৰক৷ চৰ্তাৱলী 55x আৰু -55x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-111y=374+70
-45y লৈ -66y যোগ কৰক৷
-111y=444
70 লৈ 374 যোগ কৰক৷
y=-4
-111-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
11x+9\left(-4\right)=-14
11x+9y=-14-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
11x-36=-14
9 বাৰ -4 পুৰণ কৰক৷
11x=22
সমীকৰণৰ দুয়োটা দিশতে 36 যোগ কৰক৷
x=2
11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=2,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}