\left\{ \begin{array} { l } { 5 x - 4 y = 19 } \\ { 3 x + 2 y = 7 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=3
y=-1
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
5x-4y=19,3x+2y=7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-4y=19
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=4y+19
সমীকৰণৰ দুয়োটা দিশতে 4y যোগ কৰক৷
x=\frac{1}{5}\left(4y+19\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{4}{5}y+\frac{19}{5}
\frac{1}{5} বাৰ 4y+19 পুৰণ কৰক৷
3\left(\frac{4}{5}y+\frac{19}{5}\right)+2y=7
অন্য সমীকৰণত x-ৰ বাবে \frac{4y+19}{5} স্থানাপন কৰক, 3x+2y=7৷
\frac{12}{5}y+\frac{57}{5}+2y=7
3 বাৰ \frac{4y+19}{5} পুৰণ কৰক৷
\frac{22}{5}y+\frac{57}{5}=7
2y লৈ \frac{12y}{5} যোগ কৰক৷
\frac{22}{5}y=-\frac{22}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{57}{5} বিয়োগ কৰক৷
y=-1
\frac{22}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{4}{5}\left(-1\right)+\frac{19}{5}
x=\frac{4}{5}y+\frac{19}{5}-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-4+19}{5}
\frac{4}{5} বাৰ -1 পুৰণ কৰক৷
x=3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{4}{5} লৈ \frac{19}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=3,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x-4y=19,3x+2y=7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\times 3\right)}&-\frac{-4}{5\times 2-\left(-4\times 3\right)}\\-\frac{3}{5\times 2-\left(-4\times 3\right)}&\frac{5}{5\times 2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{3}{22}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 19+\frac{2}{11}\times 7\\-\frac{3}{22}\times 19+\frac{5}{22}\times 7\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
গণনা কৰক৷
x=3,y=-1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x-4y=19,3x+2y=7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 5x+3\left(-4\right)y=3\times 19,5\times 3x+5\times 2y=5\times 7
5x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
15x-12y=57,15x+10y=35
সৰলীকৰণ৷
15x-15x-12y-10y=57-35
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 15x-12y=57-ৰ পৰা 15x+10y=35 হৰণ কৰক৷
-12y-10y=57-35
-15x লৈ 15x যোগ কৰক৷ চৰ্তাৱলী 15x আৰু -15x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-22y=57-35
-10y লৈ -12y যোগ কৰক৷
-22y=22
-35 লৈ 57 যোগ কৰক৷
y=-1
-22-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x+2\left(-1\right)=7
3x+2y=7-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x-2=7
2 বাৰ -1 পুৰণ কৰক৷
3x=9
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
x=3
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=3,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}