মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-2y=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=2y+4
সমীকৰণৰ দুয়োটা দিশতে 2y যোগ কৰক৷
x=\frac{1}{5}\left(2y+4\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{5}y+\frac{4}{5}
\frac{1}{5} বাৰ 4+2y পুৰণ কৰক৷
\frac{1}{2}\left(\frac{2}{5}y+\frac{4}{5}\right)+\frac{1}{3}y=2
অন্য সমীকৰণত x-ৰ বাবে \frac{4+2y}{5} স্থানাপন কৰক, \frac{1}{2}x+\frac{1}{3}y=2৷
\frac{1}{5}y+\frac{2}{5}+\frac{1}{3}y=2
\frac{1}{2} বাৰ \frac{4+2y}{5} পুৰণ কৰক৷
\frac{8}{15}y+\frac{2}{5}=2
\frac{y}{3} লৈ \frac{y}{5} যোগ কৰক৷
\frac{8}{15}y=\frac{8}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{2}{5} বিয়োগ কৰক৷
y=3
\frac{8}{15}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{2}{5}\times 3+\frac{4}{5}
x=\frac{2}{5}y+\frac{4}{5}-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{6+4}{5}
\frac{2}{5} বাৰ 3 পুৰণ কৰক৷
x=2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{6}{5} লৈ \frac{4}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=2,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&-\frac{-2}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&\frac{5}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{4}\\-\frac{3}{16}&\frac{15}{8}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 4+\frac{3}{4}\times 2\\-\frac{3}{16}\times 4+\frac{15}{8}\times 2\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
গণনা কৰক৷
x=2,y=3
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
\frac{1}{2}\times 5x+\frac{1}{2}\left(-2\right)y=\frac{1}{2}\times 4,5\times \frac{1}{2}x+5\times \frac{1}{3}y=5\times 2
5x আৰু \frac{x}{2} সমান কৰিবৰ বাবে, \frac{1}{2}-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
\frac{5}{2}x-y=2,\frac{5}{2}x+\frac{5}{3}y=10
সৰলীকৰণ৷
\frac{5}{2}x-\frac{5}{2}x-y-\frac{5}{3}y=2-10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি \frac{5}{2}x-y=2-ৰ পৰা \frac{5}{2}x+\frac{5}{3}y=10 হৰণ কৰক৷
-y-\frac{5}{3}y=2-10
-\frac{5x}{2} লৈ \frac{5x}{2} যোগ কৰক৷ চৰ্তাৱলী \frac{5x}{2} আৰু -\frac{5x}{2} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{8}{3}y=2-10
-\frac{5y}{3} লৈ -y যোগ কৰক৷
-\frac{8}{3}y=-8
-10 লৈ 2 যোগ কৰক৷
y=3
-\frac{8}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
\frac{1}{2}x+\frac{1}{3}\times 3=2
\frac{1}{2}x+\frac{1}{3}y=2-ত y-ৰ বাবে 3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
\frac{1}{2}x+1=2
\frac{1}{3} বাৰ 3 পুৰণ কৰক৷
\frac{1}{2}x=1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x=2
2-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=2,y=3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷