মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x-2y=14,3x+7y=21
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-2y=14
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=2y+14
সমীকৰণৰ দুয়োটা দিশতে 2y যোগ কৰক৷
x=\frac{1}{5}\left(2y+14\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{5}y+\frac{14}{5}
\frac{1}{5} বাৰ 14+2y পুৰণ কৰক৷
3\left(\frac{2}{5}y+\frac{14}{5}\right)+7y=21
অন্য সমীকৰণত x-ৰ বাবে \frac{14+2y}{5} স্থানাপন কৰক, 3x+7y=21৷
\frac{6}{5}y+\frac{42}{5}+7y=21
3 বাৰ \frac{14+2y}{5} পুৰণ কৰক৷
\frac{41}{5}y+\frac{42}{5}=21
7y লৈ \frac{6y}{5} যোগ কৰক৷
\frac{41}{5}y=\frac{63}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{42}{5} বিয়োগ কৰক৷
y=\frac{63}{41}
\frac{41}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{2}{5}\times \frac{63}{41}+\frac{14}{5}
x=\frac{2}{5}y+\frac{14}{5}-ত y-ৰ বাবে \frac{63}{41}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{126}{205}+\frac{14}{5}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{2}{5} বাৰ \frac{63}{41} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{140}{41}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{126}{205} লৈ \frac{14}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{140}{41},y=\frac{63}{41}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x-2y=14,3x+7y=21
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-2\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\21\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}5&-2\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}14\\21\end{matrix}\right)
\left(\begin{matrix}5&-2\\3&7\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}14\\21\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}14\\21\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-2\times 3\right)}&-\frac{-2}{5\times 7-\left(-2\times 3\right)}\\-\frac{3}{5\times 7-\left(-2\times 3\right)}&\frac{5}{5\times 7-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}14\\21\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{41}&\frac{2}{41}\\-\frac{3}{41}&\frac{5}{41}\end{matrix}\right)\left(\begin{matrix}14\\21\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{41}\times 14+\frac{2}{41}\times 21\\-\frac{3}{41}\times 14+\frac{5}{41}\times 21\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{140}{41}\\\frac{63}{41}\end{matrix}\right)
গণনা কৰক৷
x=\frac{140}{41},y=\frac{63}{41}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x-2y=14,3x+7y=21
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 5x+3\left(-2\right)y=3\times 14,5\times 3x+5\times 7y=5\times 21
5x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
15x-6y=42,15x+35y=105
সৰলীকৰণ৷
15x-15x-6y-35y=42-105
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 15x-6y=42-ৰ পৰা 15x+35y=105 হৰণ কৰক৷
-6y-35y=42-105
-15x লৈ 15x যোগ কৰক৷ চৰ্তাৱলী 15x আৰু -15x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-41y=42-105
-35y লৈ -6y যোগ কৰক৷
-41y=-63
-105 লৈ 42 যোগ কৰক৷
y=\frac{63}{41}
-41-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x+7\times \frac{63}{41}=21
3x+7y=21-ত y-ৰ বাবে \frac{63}{41}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x+\frac{441}{41}=21
7 বাৰ \frac{63}{41} পুৰণ কৰক৷
3x=\frac{420}{41}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{441}{41} বিয়োগ কৰক৷
x=\frac{140}{41}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{140}{41},y=\frac{63}{41}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷