মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x+y=35,7x+1.1y=40
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+y=35
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-y+35
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{5}\left(-y+35\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{5}y+7
\frac{1}{5} বাৰ -y+35 পুৰণ কৰক৷
7\left(-\frac{1}{5}y+7\right)+1.1y=40
অন্য সমীকৰণত x-ৰ বাবে -\frac{y}{5}+7 স্থানাপন কৰক, 7x+1.1y=40৷
-\frac{7}{5}y+49+1.1y=40
7 বাৰ -\frac{y}{5}+7 পুৰণ কৰক৷
-\frac{3}{10}y+49=40
\frac{11y}{10} লৈ -\frac{7y}{5} যোগ কৰক৷
-\frac{3}{10}y=-9
সমীকৰণৰ দুয়োটা দিশৰ পৰা 49 বিয়োগ কৰক৷
y=30
-\frac{3}{10}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{1}{5}\times 30+7
x=-\frac{1}{5}y+7-ত y-ৰ বাবে 30-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-6+7
-\frac{1}{5} বাৰ 30 পুৰণ কৰক৷
x=1
-6 লৈ 7 যোগ কৰক৷
x=1,y=30
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+y=35,7x+1.1y=40
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\40\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1.1}{5\times 1.1-7}&-\frac{1}{5\times 1.1-7}\\-\frac{7}{5\times 1.1-7}&\frac{5}{5\times 1.1-7}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}&\frac{2}{3}\\\frac{14}{3}&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}\times 35+\frac{2}{3}\times 40\\\frac{14}{3}\times 35-\frac{10}{3}\times 40\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\30\end{matrix}\right)
গণনা কৰক৷
x=1,y=30
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+y=35,7x+1.1y=40
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
7\times 5x+7y=7\times 35,5\times 7x+5\times 1.1y=5\times 40
5x আৰু 7x সমান কৰিবৰ বাবে, 7-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
35x+7y=245,35x+5.5y=200
সৰলীকৰণ৷
35x-35x+7y-5.5y=245-200
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 35x+7y=245-ৰ পৰা 35x+5.5y=200 হৰণ কৰক৷
7y-5.5y=245-200
-35x লৈ 35x যোগ কৰক৷ চৰ্তাৱলী 35x আৰু -35x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
1.5y=245-200
-\frac{11y}{2} লৈ 7y যোগ কৰক৷
1.5y=45
-200 লৈ 245 যোগ কৰক৷
y=30
1.5-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
7x+1.1\times 30=40
7x+1.1y=40-ত y-ৰ বাবে 30-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
7x+33=40
1.1 বাৰ 30 পুৰণ কৰক৷
7x=7
সমীকৰণৰ দুয়োটা দিশৰ পৰা 33 বিয়োগ কৰক৷
x=1
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=30
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷