মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x+7y=-1,2x+4y=2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+7y=-1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-7y-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 7y বিয়োগ কৰক৷
x=\frac{1}{5}\left(-7y-1\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{7}{5}y-\frac{1}{5}
\frac{1}{5} বাৰ -7y-1 পুৰণ কৰক৷
2\left(-\frac{7}{5}y-\frac{1}{5}\right)+4y=2
অন্য সমীকৰণত x-ৰ বাবে \frac{-7y-1}{5} স্থানাপন কৰক, 2x+4y=2৷
-\frac{14}{5}y-\frac{2}{5}+4y=2
2 বাৰ \frac{-7y-1}{5} পুৰণ কৰক৷
\frac{6}{5}y-\frac{2}{5}=2
4y লৈ -\frac{14y}{5} যোগ কৰক৷
\frac{6}{5}y=\frac{12}{5}
সমীকৰণৰ দুয়োটা দিশতে \frac{2}{5} যোগ কৰক৷
y=2
\frac{6}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{7}{5}\times 2-\frac{1}{5}
x=-\frac{7}{5}y-\frac{1}{5}-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-14-1}{5}
-\frac{7}{5} বাৰ 2 পুৰণ কৰক৷
x=-3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{14}{5} লৈ -\frac{1}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-3,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+7y=-1,2x+4y=2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&7\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}5&7\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}-1\\2\end{matrix}\right)
\left(\begin{matrix}5&7\\2&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}-1\\2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\2&4\end{matrix}\right))\left(\begin{matrix}-1\\2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-7\times 2}&-\frac{7}{5\times 4-7\times 2}\\-\frac{2}{5\times 4-7\times 2}&\frac{5}{5\times 4-7\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{7}{6}\\-\frac{1}{3}&\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}-1\\2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-1\right)-\frac{7}{6}\times 2\\-\frac{1}{3}\left(-1\right)+\frac{5}{6}\times 2\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
গণনা কৰক৷
x=-3,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+7y=-1,2x+4y=2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 5x+2\times 7y=2\left(-1\right),5\times 2x+5\times 4y=5\times 2
5x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
10x+14y=-2,10x+20y=10
সৰলীকৰণ৷
10x-10x+14y-20y=-2-10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 10x+14y=-2-ৰ পৰা 10x+20y=10 হৰণ কৰক৷
14y-20y=-2-10
-10x লৈ 10x যোগ কৰক৷ চৰ্তাৱলী 10x আৰু -10x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-6y=-2-10
-20y লৈ 14y যোগ কৰক৷
-6y=-12
-10 লৈ -2 যোগ কৰক৷
y=2
-6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+4\times 2=2
2x+4y=2-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+8=2
4 বাৰ 2 পুৰণ কৰক৷
2x=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 8 বিয়োগ কৰক৷
x=-3
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-3,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷