মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x+6y=32,3x-2y=-20
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+6y=32
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-6y+32
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6y বিয়োগ কৰক৷
x=\frac{1}{5}\left(-6y+32\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{6}{5}y+\frac{32}{5}
\frac{1}{5} বাৰ -6y+32 পুৰণ কৰক৷
3\left(-\frac{6}{5}y+\frac{32}{5}\right)-2y=-20
অন্য সমীকৰণত x-ৰ বাবে \frac{-6y+32}{5} স্থানাপন কৰক, 3x-2y=-20৷
-\frac{18}{5}y+\frac{96}{5}-2y=-20
3 বাৰ \frac{-6y+32}{5} পুৰণ কৰক৷
-\frac{28}{5}y+\frac{96}{5}=-20
-2y লৈ -\frac{18y}{5} যোগ কৰক৷
-\frac{28}{5}y=-\frac{196}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{96}{5} বিয়োগ কৰক৷
y=7
-\frac{28}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{6}{5}\times 7+\frac{32}{5}
x=-\frac{6}{5}y+\frac{32}{5}-ত y-ৰ বাবে 7-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-42+32}{5}
-\frac{6}{5} বাৰ 7 পুৰণ কৰক৷
x=-2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{42}{5} লৈ \frac{32}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-2,y=7
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+6y=32,3x-2y=-20
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\-20\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-6\times 3}&-\frac{6}{5\left(-2\right)-6\times 3}\\-\frac{3}{5\left(-2\right)-6\times 3}&\frac{5}{5\left(-2\right)-6\times 3}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\\frac{3}{28}&-\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 32+\frac{3}{14}\left(-20\right)\\\frac{3}{28}\times 32-\frac{5}{28}\left(-20\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\7\end{matrix}\right)
গণনা কৰক৷
x=-2,y=7
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+6y=32,3x-2y=-20
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 5x+3\times 6y=3\times 32,5\times 3x+5\left(-2\right)y=5\left(-20\right)
5x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
15x+18y=96,15x-10y=-100
সৰলীকৰণ৷
15x-15x+18y+10y=96+100
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 15x+18y=96-ৰ পৰা 15x-10y=-100 হৰণ কৰক৷
18y+10y=96+100
-15x লৈ 15x যোগ কৰক৷ চৰ্তাৱলী 15x আৰু -15x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
28y=96+100
10y লৈ 18y যোগ কৰক৷
28y=196
100 লৈ 96 যোগ কৰক৷
y=7
28-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x-2\times 7=-20
3x-2y=-20-ত y-ৰ বাবে 7-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x-14=-20
-2 বাৰ 7 পুৰণ কৰক৷
3x=-6
সমীকৰণৰ দুয়োটা দিশতে 14 যোগ কৰক৷
x=-2
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2,y=7
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷