\left\{ \begin{array} { l } { 44 = 12 k + b } \\ { 16 = 82 k + b } \end{array} \right.
k, b-ৰ বাবে সমাধান কৰক
k=-\frac{2}{5}=-0.4
b = \frac{244}{5} = 48\frac{4}{5} = 48.8
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
12k+b=44
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
82k+b=16
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
12k+b=44,82k+b=16
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
12k+b=44
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে k পৃথক কৰি kৰ বাবে ইয়াক সমাধান কৰক৷
12k=-b+44
সমীকৰণৰ দুয়োটা দিশৰ পৰা b বিয়োগ কৰক৷
k=\frac{1}{12}\left(-b+44\right)
12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
k=-\frac{1}{12}b+\frac{11}{3}
\frac{1}{12} বাৰ -b+44 পুৰণ কৰক৷
82\left(-\frac{1}{12}b+\frac{11}{3}\right)+b=16
অন্য সমীকৰণত k-ৰ বাবে -\frac{b}{12}+\frac{11}{3} স্থানাপন কৰক, 82k+b=16৷
-\frac{41}{6}b+\frac{902}{3}+b=16
82 বাৰ -\frac{b}{12}+\frac{11}{3} পুৰণ কৰক৷
-\frac{35}{6}b+\frac{902}{3}=16
b লৈ -\frac{41b}{6} যোগ কৰক৷
-\frac{35}{6}b=-\frac{854}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{902}{3} বিয়োগ কৰক৷
b=\frac{244}{5}
-\frac{35}{6}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
k=-\frac{1}{12}\times \frac{244}{5}+\frac{11}{3}
k=-\frac{1}{12}b+\frac{11}{3}-ত b-ৰ বাবে \frac{244}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি k-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
k=-\frac{61}{15}+\frac{11}{3}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{1}{12} বাৰ \frac{244}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
k=-\frac{2}{5}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{61}{15} লৈ \frac{11}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
k=-\frac{2}{5},b=\frac{244}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
12k+b=44
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
82k+b=16
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
12k+b=44,82k+b=16
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}12&1\\82&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}44\\16\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}12&1\\82&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
\left(\begin{matrix}12&1\\82&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12-82}&-\frac{1}{12-82}\\-\frac{82}{12-82}&\frac{12}{12-82}\end{matrix}\right)\left(\begin{matrix}44\\16\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{70}&\frac{1}{70}\\\frac{41}{35}&-\frac{6}{35}\end{matrix}\right)\left(\begin{matrix}44\\16\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{70}\times 44+\frac{1}{70}\times 16\\\frac{41}{35}\times 44-\frac{6}{35}\times 16\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\\frac{244}{5}\end{matrix}\right)
গণনা কৰক৷
k=-\frac{2}{5},b=\frac{244}{5}
মেট্ৰিক্স উপাদান k আৰু b নিষ্কাষিত কৰক৷
12k+b=44
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
82k+b=16
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
12k+b=44,82k+b=16
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
12k-82k+b-b=44-16
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 12k+b=44-ৰ পৰা 82k+b=16 হৰণ কৰক৷
12k-82k=44-16
-b লৈ b যোগ কৰক৷ চৰ্তাৱলী b আৰু -b সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-70k=44-16
-82k লৈ 12k যোগ কৰক৷
-70k=28
-16 লৈ 44 যোগ কৰক৷
k=-\frac{2}{5}
-70-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
82\left(-\frac{2}{5}\right)+b=16
82k+b=16-ত k-ৰ বাবে -\frac{2}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি b-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-\frac{164}{5}+b=16
82 বাৰ -\frac{2}{5} পুৰণ কৰক৷
b=\frac{244}{5}
সমীকৰণৰ দুয়োটা দিশতে \frac{164}{5} যোগ কৰক৷
k=-\frac{2}{5},b=\frac{244}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}