মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4x-3y=7,5x-6y=11
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4x-3y=7
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
4x=3y+7
সমীকৰণৰ দুয়োটা দিশতে 3y যোগ কৰক৷
x=\frac{1}{4}\left(3y+7\right)
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{4}y+\frac{7}{4}
\frac{1}{4} বাৰ 3y+7 পুৰণ কৰক৷
5\left(\frac{3}{4}y+\frac{7}{4}\right)-6y=11
অন্য সমীকৰণত x-ৰ বাবে \frac{3y+7}{4} স্থানাপন কৰক, 5x-6y=11৷
\frac{15}{4}y+\frac{35}{4}-6y=11
5 বাৰ \frac{3y+7}{4} পুৰণ কৰক৷
-\frac{9}{4}y+\frac{35}{4}=11
-6y লৈ \frac{15y}{4} যোগ কৰক৷
-\frac{9}{4}y=\frac{9}{4}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{35}{4} বিয়োগ কৰক৷
y=-1
-\frac{9}{4}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{3}{4}\left(-1\right)+\frac{7}{4}
x=\frac{3}{4}y+\frac{7}{4}-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-3+7}{4}
\frac{3}{4} বাৰ -1 পুৰণ কৰক৷
x=1
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{3}{4} লৈ \frac{7}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=1,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4x-3y=7,5x-6y=11
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&-3\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}4&-3\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
\left(\begin{matrix}4&-3\\5&-6\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-\left(-3\times 5\right)}&-\frac{-3}{4\left(-6\right)-\left(-3\times 5\right)}\\-\frac{5}{4\left(-6\right)-\left(-3\times 5\right)}&\frac{4}{4\left(-6\right)-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\\frac{5}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 7-\frac{1}{3}\times 11\\\frac{5}{9}\times 7-\frac{4}{9}\times 11\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
গণনা কৰক৷
x=1,y=-1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
4x-3y=7,5x-6y=11
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\times 4x+5\left(-3\right)y=5\times 7,4\times 5x+4\left(-6\right)y=4\times 11
4x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
20x-15y=35,20x-24y=44
সৰলীকৰণ৷
20x-20x-15y+24y=35-44
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 20x-15y=35-ৰ পৰা 20x-24y=44 হৰণ কৰক৷
-15y+24y=35-44
-20x লৈ 20x যোগ কৰক৷ চৰ্তাৱলী 20x আৰু -20x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
9y=35-44
24y লৈ -15y যোগ কৰক৷
9y=-9
-44 লৈ 35 যোগ কৰক৷
y=-1
9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x-6\left(-1\right)=11
5x-6y=11-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x+6=11
-6 বাৰ -1 পুৰণ কৰক৷
5x=5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=1
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷