\left\{ \begin{array} { l } { 4 x - 3 y = 1 } \\ { 5 x + 2 y = 13 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x = \frac{41}{23} = 1\frac{18}{23} \approx 1.782608696
y = \frac{47}{23} = 2\frac{1}{23} \approx 2.043478261
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
4x-3y=1,5x+2y=13
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4x-3y=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
4x=3y+1
সমীকৰণৰ দুয়োটা দিশতে 3y যোগ কৰক৷
x=\frac{1}{4}\left(3y+1\right)
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{4}y+\frac{1}{4}
\frac{1}{4} বাৰ 3y+1 পুৰণ কৰক৷
5\left(\frac{3}{4}y+\frac{1}{4}\right)+2y=13
অন্য সমীকৰণত x-ৰ বাবে \frac{3y+1}{4} স্থানাপন কৰক, 5x+2y=13৷
\frac{15}{4}y+\frac{5}{4}+2y=13
5 বাৰ \frac{3y+1}{4} পুৰণ কৰক৷
\frac{23}{4}y+\frac{5}{4}=13
2y লৈ \frac{15y}{4} যোগ কৰক৷
\frac{23}{4}y=\frac{47}{4}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{5}{4} বিয়োগ কৰক৷
y=\frac{47}{23}
\frac{23}{4}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{3}{4}\times \frac{47}{23}+\frac{1}{4}
x=\frac{3}{4}y+\frac{1}{4}-ত y-ৰ বাবে \frac{47}{23}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{141}{92}+\frac{1}{4}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{3}{4} বাৰ \frac{47}{23} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{41}{23}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{141}{92} লৈ \frac{1}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{41}{23},y=\frac{47}{23}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4x-3y=1,5x+2y=13
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\13\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\times 5\right)}&-\frac{-3}{4\times 2-\left(-3\times 5\right)}\\-\frac{5}{4\times 2-\left(-3\times 5\right)}&\frac{4}{4\times 2-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\13\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{23}&\frac{3}{23}\\-\frac{5}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}1\\13\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{23}+\frac{3}{23}\times 13\\-\frac{5}{23}+\frac{4}{23}\times 13\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{41}{23}\\\frac{47}{23}\end{matrix}\right)
গণনা কৰক৷
x=\frac{41}{23},y=\frac{47}{23}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
4x-3y=1,5x+2y=13
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\times 4x+5\left(-3\right)y=5,4\times 5x+4\times 2y=4\times 13
4x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
20x-15y=5,20x+8y=52
সৰলীকৰণ৷
20x-20x-15y-8y=5-52
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 20x-15y=5-ৰ পৰা 20x+8y=52 হৰণ কৰক৷
-15y-8y=5-52
-20x লৈ 20x যোগ কৰক৷ চৰ্তাৱলী 20x আৰু -20x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-23y=5-52
-8y লৈ -15y যোগ কৰক৷
-23y=-47
-52 লৈ 5 যোগ কৰক৷
y=\frac{47}{23}
-23-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x+2\times \frac{47}{23}=13
5x+2y=13-ত y-ৰ বাবে \frac{47}{23}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x+\frac{94}{23}=13
2 বাৰ \frac{47}{23} পুৰণ কৰক৷
5x=\frac{205}{23}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{94}{23} বিয়োগ কৰক৷
x=\frac{41}{23}
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{41}{23},y=\frac{47}{23}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}