মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4x+3y+14=0,2x+5y+16=0
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4x+3y+14=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
4x+3y=-14
সমীকৰণৰ দুয়োটা দিশৰ পৰা 14 বিয়োগ কৰক৷
4x=-3y-14
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{4}\left(-3y-14\right)
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{4}y-\frac{7}{2}
\frac{1}{4} বাৰ -3y-14 পুৰণ কৰক৷
2\left(-\frac{3}{4}y-\frac{7}{2}\right)+5y+16=0
অন্য সমীকৰণত x-ৰ বাবে -\frac{3y}{4}-\frac{7}{2} স্থানাপন কৰক, 2x+5y+16=0৷
-\frac{3}{2}y-7+5y+16=0
2 বাৰ -\frac{3y}{4}-\frac{7}{2} পুৰণ কৰক৷
\frac{7}{2}y-7+16=0
5y লৈ -\frac{3y}{2} যোগ কৰক৷
\frac{7}{2}y+9=0
16 লৈ -7 যোগ কৰক৷
\frac{7}{2}y=-9
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9 বিয়োগ কৰক৷
y=-\frac{18}{7}
\frac{7}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{4}\left(-\frac{18}{7}\right)-\frac{7}{2}
x=-\frac{3}{4}y-\frac{7}{2}-ত y-ৰ বাবে -\frac{18}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{27}{14}-\frac{7}{2}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{3}{4} বাৰ -\frac{18}{7} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{11}{7}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{27}{14} লৈ -\frac{7}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-\frac{11}{7},y=-\frac{18}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4x+3y+14=0,2x+5y+16=0
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\-16\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}4&3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}-14\\-16\end{matrix}\right)
\left(\begin{matrix}4&3\\2&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}-14\\-16\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}-14\\-16\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3\times 2}&-\frac{3}{4\times 5-3\times 2}\\-\frac{2}{4\times 5-3\times 2}&\frac{4}{4\times 5-3\times 2}\end{matrix}\right)\left(\begin{matrix}-14\\-16\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&-\frac{3}{14}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-14\\-16\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-14\right)-\frac{3}{14}\left(-16\right)\\-\frac{1}{7}\left(-14\right)+\frac{2}{7}\left(-16\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{7}\\-\frac{18}{7}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{11}{7},y=-\frac{18}{7}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
4x+3y+14=0,2x+5y+16=0
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 4x+2\times 3y+2\times 14=0,4\times 2x+4\times 5y+4\times 16=0
4x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
8x+6y+28=0,8x+20y+64=0
সৰলীকৰণ৷
8x-8x+6y-20y+28-64=0
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 8x+6y+28=0-ৰ পৰা 8x+20y+64=0 হৰণ কৰক৷
6y-20y+28-64=0
-8x লৈ 8x যোগ কৰক৷ চৰ্তাৱলী 8x আৰু -8x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-14y+28-64=0
-20y লৈ 6y যোগ কৰক৷
-14y-36=0
-64 লৈ 28 যোগ কৰক৷
-14y=36
সমীকৰণৰ দুয়োটা দিশতে 36 যোগ কৰক৷
y=-\frac{18}{7}
-14-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+5\left(-\frac{18}{7}\right)+16=0
2x+5y+16=0-ত y-ৰ বাবে -\frac{18}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x-\frac{90}{7}+16=0
5 বাৰ -\frac{18}{7} পুৰণ কৰক৷
2x+\frac{22}{7}=0
16 লৈ -\frac{90}{7} যোগ কৰক৷
2x=-\frac{22}{7}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{22}{7} বিয়োগ কৰক৷
x=-\frac{11}{7}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{11}{7},y=-\frac{18}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷