\left\{ \begin{array} { l } { 4 m + 9 n = - 35 } \\ { 3 m - 8 n = 18 } \end{array} \right.
m, n-ৰ বাবে সমাধান কৰক
m=-2
n=-3
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
4m+9n=-35,3m-8n=18
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4m+9n=-35
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে m পৃথক কৰি mৰ বাবে ইয়াক সমাধান কৰক৷
4m=-9n-35
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9n বিয়োগ কৰক৷
m=\frac{1}{4}\left(-9n-35\right)
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
m=-\frac{9}{4}n-\frac{35}{4}
\frac{1}{4} বাৰ -9n-35 পুৰণ কৰক৷
3\left(-\frac{9}{4}n-\frac{35}{4}\right)-8n=18
অন্য সমীকৰণত m-ৰ বাবে \frac{-9n-35}{4} স্থানাপন কৰক, 3m-8n=18৷
-\frac{27}{4}n-\frac{105}{4}-8n=18
3 বাৰ \frac{-9n-35}{4} পুৰণ কৰক৷
-\frac{59}{4}n-\frac{105}{4}=18
-8n লৈ -\frac{27n}{4} যোগ কৰক৷
-\frac{59}{4}n=\frac{177}{4}
সমীকৰণৰ দুয়োটা দিশতে \frac{105}{4} যোগ কৰক৷
n=-3
-\frac{59}{4}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
m=-\frac{9}{4}\left(-3\right)-\frac{35}{4}
m=-\frac{9}{4}n-\frac{35}{4}-ত n-ৰ বাবে -3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি m-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
m=\frac{27-35}{4}
-\frac{9}{4} বাৰ -3 পুৰণ কৰক৷
m=-2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{27}{4} লৈ -\frac{35}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
m=-2,n=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4m+9n=-35,3m-8n=18
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&9\\3&-8\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-35\\18\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&9\\3&-8\end{matrix}\right))\left(\begin{matrix}4&9\\3&-8\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&-8\end{matrix}\right))\left(\begin{matrix}-35\\18\end{matrix}\right)
\left(\begin{matrix}4&9\\3&-8\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&-8\end{matrix}\right))\left(\begin{matrix}-35\\18\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&-8\end{matrix}\right))\left(\begin{matrix}-35\\18\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{4\left(-8\right)-9\times 3}&-\frac{9}{4\left(-8\right)-9\times 3}\\-\frac{3}{4\left(-8\right)-9\times 3}&\frac{4}{4\left(-8\right)-9\times 3}\end{matrix}\right)\left(\begin{matrix}-35\\18\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{8}{59}&\frac{9}{59}\\\frac{3}{59}&-\frac{4}{59}\end{matrix}\right)\left(\begin{matrix}-35\\18\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{8}{59}\left(-35\right)+\frac{9}{59}\times 18\\\frac{3}{59}\left(-35\right)-\frac{4}{59}\times 18\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2\\-3\end{matrix}\right)
গণনা কৰক৷
m=-2,n=-3
মেট্ৰিক্স উপাদান m আৰু n নিষ্কাষিত কৰক৷
4m+9n=-35,3m-8n=18
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 4m+3\times 9n=3\left(-35\right),4\times 3m+4\left(-8\right)n=4\times 18
4m আৰু 3m সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
12m+27n=-105,12m-32n=72
সৰলীকৰণ৷
12m-12m+27n+32n=-105-72
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 12m+27n=-105-ৰ পৰা 12m-32n=72 হৰণ কৰক৷
27n+32n=-105-72
-12m লৈ 12m যোগ কৰক৷ চৰ্তাৱলী 12m আৰু -12m সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
59n=-105-72
32n লৈ 27n যোগ কৰক৷
59n=-177
-72 লৈ -105 যোগ কৰক৷
n=-3
59-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3m-8\left(-3\right)=18
3m-8n=18-ত n-ৰ বাবে -3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি m-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3m+24=18
-8 বাৰ -3 পুৰণ কৰক৷
3m=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 24 বিয়োগ কৰক৷
m=-2
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
m=-2,n=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}