\left\{ \begin{array} { l } { 3 x - 5 y - 4 = 0 } \\ { 15 y = 4 x + 3 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=3
y=1
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
3x-5y=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 4 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
15y-4x=3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
3x-5y=4,-4x+15y=3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-5y=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=5y+4
সমীকৰণৰ দুয়োটা দিশতে 5y যোগ কৰক৷
x=\frac{1}{3}\left(5y+4\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{5}{3}y+\frac{4}{3}
\frac{1}{3} বাৰ 5y+4 পুৰণ কৰক৷
-4\left(\frac{5}{3}y+\frac{4}{3}\right)+15y=3
অন্য সমীকৰণত x-ৰ বাবে \frac{5y+4}{3} স্থানাপন কৰক, -4x+15y=3৷
-\frac{20}{3}y-\frac{16}{3}+15y=3
-4 বাৰ \frac{5y+4}{3} পুৰণ কৰক৷
\frac{25}{3}y-\frac{16}{3}=3
15y লৈ -\frac{20y}{3} যোগ কৰক৷
\frac{25}{3}y=\frac{25}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{16}{3} যোগ কৰক৷
y=1
\frac{25}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{5+4}{3}
x=\frac{5}{3}y+\frac{4}{3}-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{5}{3} লৈ \frac{4}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=3,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x-5y=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 4 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
15y-4x=3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
3x-5y=4,-4x+15y=3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-4&15\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{3\times 15-\left(-5\left(-4\right)\right)}&-\frac{-5}{3\times 15-\left(-5\left(-4\right)\right)}\\-\frac{-4}{3\times 15-\left(-5\left(-4\right)\right)}&\frac{3}{3\times 15-\left(-5\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\\frac{4}{25}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 4+\frac{1}{5}\times 3\\\frac{4}{25}\times 4+\frac{3}{25}\times 3\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
গণনা কৰক৷
x=3,y=1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x-5y=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 4 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
15y-4x=3
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
3x-5y=4,-4x+15y=3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-4\times 3x-4\left(-5\right)y=-4\times 4,3\left(-4\right)x+3\times 15y=3\times 3
3x আৰু -4x সমান কৰিবৰ বাবে, -4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
-12x+20y=-16,-12x+45y=9
সৰলীকৰণ৷
-12x+12x+20y-45y=-16-9
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -12x+20y=-16-ৰ পৰা -12x+45y=9 হৰণ কৰক৷
20y-45y=-16-9
12x লৈ -12x যোগ কৰক৷ চৰ্তাৱলী -12x আৰু 12x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-25y=-16-9
-45y লৈ 20y যোগ কৰক৷
-25y=-25
-9 লৈ -16 যোগ কৰক৷
y=1
-25-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-4x+15=3
-4x+15y=3-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-4x=-12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 15 বিয়োগ কৰক৷
x=3
-4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=3,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}