মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x-2y=-10,5x-11y=-9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-2y=-10
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=2y-10
সমীকৰণৰ দুয়োটা দিশতে 2y যোগ কৰক৷
x=\frac{1}{3}\left(2y-10\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{3}y-\frac{10}{3}
\frac{1}{3} বাৰ -10+2y পুৰণ কৰক৷
5\left(\frac{2}{3}y-\frac{10}{3}\right)-11y=-9
অন্য সমীকৰণত x-ৰ বাবে \frac{-10+2y}{3} স্থানাপন কৰক, 5x-11y=-9৷
\frac{10}{3}y-\frac{50}{3}-11y=-9
5 বাৰ \frac{-10+2y}{3} পুৰণ কৰক৷
-\frac{23}{3}y-\frac{50}{3}=-9
-11y লৈ \frac{10y}{3} যোগ কৰক৷
-\frac{23}{3}y=\frac{23}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{50}{3} যোগ কৰক৷
y=-1
-\frac{23}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{2}{3}\left(-1\right)-\frac{10}{3}
x=\frac{2}{3}y-\frac{10}{3}-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-2-10}{3}
\frac{2}{3} বাৰ -1 পুৰণ কৰক৷
x=-4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{2}{3} লৈ -\frac{10}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-4,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x-2y=-10,5x-11y=-9
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{3\left(-11\right)-\left(-2\times 5\right)}&-\frac{-2}{3\left(-11\right)-\left(-2\times 5\right)}\\-\frac{5}{3\left(-11\right)-\left(-2\times 5\right)}&\frac{3}{3\left(-11\right)-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-10\\-9\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{23}&-\frac{2}{23}\\\frac{5}{23}&-\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}-10\\-9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{23}\left(-10\right)-\frac{2}{23}\left(-9\right)\\\frac{5}{23}\left(-10\right)-\frac{3}{23}\left(-9\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
গণনা কৰক৷
x=-4,y=-1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x-2y=-10,5x-11y=-9
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\times 3x+5\left(-2\right)y=5\left(-10\right),3\times 5x+3\left(-11\right)y=3\left(-9\right)
3x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
15x-10y=-50,15x-33y=-27
সৰলীকৰণ৷
15x-15x-10y+33y=-50+27
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 15x-10y=-50-ৰ পৰা 15x-33y=-27 হৰণ কৰক৷
-10y+33y=-50+27
-15x লৈ 15x যোগ কৰক৷ চৰ্তাৱলী 15x আৰু -15x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
23y=-50+27
33y লৈ -10y যোগ কৰক৷
23y=-23
27 লৈ -50 যোগ কৰক৷
y=-1
23-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x-11\left(-1\right)=-9
5x-11y=-9-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x+11=-9
-11 বাৰ -1 পুৰণ কৰক৷
5x=-20
সমীকৰণৰ দুয়োটা দিশৰ পৰা 11 বিয়োগ কৰক৷
x=-4
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-4,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷