মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x+2y-7=0,x-5y+9=0
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x+2y-7=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x+2y=7
সমীকৰণৰ দুয়োটা দিশতে 7 যোগ কৰক৷
3x=-2y+7
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x=\frac{1}{3}\left(-2y+7\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{2}{3}y+\frac{7}{3}
\frac{1}{3} বাৰ -2y+7 পুৰণ কৰক৷
-\frac{2}{3}y+\frac{7}{3}-5y+9=0
অন্য সমীকৰণত x-ৰ বাবে \frac{-2y+7}{3} স্থানাপন কৰক, x-5y+9=0৷
-\frac{17}{3}y+\frac{7}{3}+9=0
-5y লৈ -\frac{2y}{3} যোগ কৰক৷
-\frac{17}{3}y+\frac{34}{3}=0
9 লৈ \frac{7}{3} যোগ কৰক৷
-\frac{17}{3}y=-\frac{34}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{34}{3} বিয়োগ কৰক৷
y=2
-\frac{17}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{2}{3}\times 2+\frac{7}{3}
x=-\frac{2}{3}y+\frac{7}{3}-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-4+7}{3}
-\frac{2}{3} বাৰ 2 পুৰণ কৰক৷
x=1
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{4}{3} লৈ \frac{7}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=1,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x+2y-7=0,x-5y+9=0
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
\left(\begin{matrix}3&2\\1&-5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-5\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-2}&-\frac{2}{3\left(-5\right)-2}\\-\frac{1}{3\left(-5\right)-2}&\frac{3}{3\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{2}{17}\\\frac{1}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\times 7+\frac{2}{17}\left(-9\right)\\\frac{1}{17}\times 7-\frac{3}{17}\left(-9\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
গণনা কৰক৷
x=1,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x+2y-7=0,x-5y+9=0
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3x+2y-7=0,3x+3\left(-5\right)y+3\times 9=0
3x আৰু x সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
3x+2y-7=0,3x-15y+27=0
সৰলীকৰণ৷
3x-3x+2y+15y-7-27=0
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3x+2y-7=0-ৰ পৰা 3x-15y+27=0 হৰণ কৰক৷
2y+15y-7-27=0
-3x লৈ 3x যোগ কৰক৷ চৰ্তাৱলী 3x আৰু -3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
17y-7-27=0
15y লৈ 2y যোগ কৰক৷
17y-34=0
-27 লৈ -7 যোগ কৰক৷
17y=34
সমীকৰণৰ দুয়োটা দিশতে 34 যোগ কৰক৷
y=2
17-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x-5\times 2+9=0
x-5y+9=0-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x-10+9=0
-5 বাৰ 2 পুৰণ কৰক৷
x-1=0
9 লৈ -10 যোগ কৰক৷
x=1
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
x=1,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷