মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x+2y=1,2x-7y=-2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x+2y=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=-2y+1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
x=\frac{1}{3}\left(-2y+1\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{2}{3}y+\frac{1}{3}
\frac{1}{3} বাৰ -2y+1 পুৰণ কৰক৷
2\left(-\frac{2}{3}y+\frac{1}{3}\right)-7y=-2
অন্য সমীকৰণত x-ৰ বাবে \frac{-2y+1}{3} স্থানাপন কৰক, 2x-7y=-2৷
-\frac{4}{3}y+\frac{2}{3}-7y=-2
2 বাৰ \frac{-2y+1}{3} পুৰণ কৰক৷
-\frac{25}{3}y+\frac{2}{3}=-2
-7y লৈ -\frac{4y}{3} যোগ কৰক৷
-\frac{25}{3}y=-\frac{8}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{2}{3} বিয়োগ কৰক৷
y=\frac{8}{25}
-\frac{25}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{2}{3}\times \frac{8}{25}+\frac{1}{3}
x=-\frac{2}{3}y+\frac{1}{3}-ত y-ৰ বাবে \frac{8}{25}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{16}{75}+\frac{1}{3}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{2}{3} বাৰ \frac{8}{25} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{3}{25}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{16}{75} লৈ \frac{1}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{3}{25},y=\frac{8}{25}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x+2y=1,2x-7y=-2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&2\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}3&2\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
\left(\begin{matrix}3&2\\2&-7\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-7\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3\left(-7\right)-2\times 2}&-\frac{2}{3\left(-7\right)-2\times 2}\\-\frac{2}{3\left(-7\right)-2\times 2}&\frac{3}{3\left(-7\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{25}&\frac{2}{25}\\\frac{2}{25}&-\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{25}+\frac{2}{25}\left(-2\right)\\\frac{2}{25}-\frac{3}{25}\left(-2\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\\\frac{8}{25}\end{matrix}\right)
গণনা কৰক৷
x=\frac{3}{25},y=\frac{8}{25}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x+2y=1,2x-7y=-2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 3x+2\times 2y=2,3\times 2x+3\left(-7\right)y=3\left(-2\right)
3x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
6x+4y=2,6x-21y=-6
সৰলীকৰণ৷
6x-6x+4y+21y=2+6
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x+4y=2-ৰ পৰা 6x-21y=-6 হৰণ কৰক৷
4y+21y=2+6
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
25y=2+6
21y লৈ 4y যোগ কৰক৷
25y=8
6 লৈ 2 যোগ কৰক৷
y=\frac{8}{25}
25-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x-7\times \frac{8}{25}=-2
2x-7y=-2-ত y-ৰ বাবে \frac{8}{25}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x-\frac{56}{25}=-2
-7 বাৰ \frac{8}{25} পুৰণ কৰক৷
2x=\frac{6}{25}
সমীকৰণৰ দুয়োটা দিশতে \frac{56}{25} যোগ কৰক৷
x=\frac{3}{25}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{25},y=\frac{8}{25}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷