মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x+2-4y=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
3x-4y=-2
দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
3x-4y=-2,x+y=10
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-4y=-2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=4y-2
সমীকৰণৰ দুয়োটা দিশতে 4y যোগ কৰক৷
x=\frac{1}{3}\left(4y-2\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{4}{3}y-\frac{2}{3}
\frac{1}{3} বাৰ 4y-2 পুৰণ কৰক৷
\frac{4}{3}y-\frac{2}{3}+y=10
অন্য সমীকৰণত x-ৰ বাবে \frac{4y-2}{3} স্থানাপন কৰক, x+y=10৷
\frac{7}{3}y-\frac{2}{3}=10
y লৈ \frac{4y}{3} যোগ কৰক৷
\frac{7}{3}y=\frac{32}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{2}{3} যোগ কৰক৷
y=\frac{32}{7}
\frac{7}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{4}{3}\times \frac{32}{7}-\frac{2}{3}
x=\frac{4}{3}y-\frac{2}{3}-ত y-ৰ বাবে \frac{32}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{128}{21}-\frac{2}{3}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{4}{3} বাৰ \frac{32}{7} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{38}{7}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{128}{21} লৈ -\frac{2}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{38}{7},y=\frac{32}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x+2-4y=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
3x-4y=-2
দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
3x-4y=-2,x+y=10
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\10\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}3&-4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
\left(\begin{matrix}3&-4\\1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{-4}{3-\left(-4\right)}\\-\frac{1}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{4}{7}\\-\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-2\right)+\frac{4}{7}\times 10\\-\frac{1}{7}\left(-2\right)+\frac{3}{7}\times 10\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{38}{7}\\\frac{32}{7}\end{matrix}\right)
গণনা কৰক৷
x=\frac{38}{7},y=\frac{32}{7}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x+2-4y=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
3x-4y=-2
দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
3x-4y=-2,x+y=10
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3x-4y=-2,3x+3y=3\times 10
3x আৰু x সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
3x-4y=-2,3x+3y=30
সৰলীকৰণ৷
3x-3x-4y-3y=-2-30
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3x-4y=-2-ৰ পৰা 3x+3y=30 হৰণ কৰক৷
-4y-3y=-2-30
-3x লৈ 3x যোগ কৰক৷ চৰ্তাৱলী 3x আৰু -3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-7y=-2-30
-3y লৈ -4y যোগ কৰক৷
-7y=-32
-30 লৈ -2 যোগ কৰক৷
y=\frac{32}{7}
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x+\frac{32}{7}=10
x+y=10-ত y-ৰ বাবে \frac{32}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{38}{7}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{32}{7} বিয়োগ কৰক৷
x=\frac{38}{7},y=\frac{32}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷