\left\{ \begin{array} { l } { 2 y = 3 x - 6 } \\ { 5 x + 4 y = 8 } \end{array} \right.
y, x-ৰ বাবে সমাধান কৰক
x = \frac{20}{11} = 1\frac{9}{11} \approx 1.818181818
y=-\frac{3}{11}\approx -0.272727273
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2y-3x=-6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
2y-3x=-6,4y+5x=8
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2y-3x=-6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
2y=3x-6
সমীকৰণৰ দুয়োটা দিশতে 3x যোগ কৰক৷
y=\frac{1}{2}\left(3x-6\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=\frac{3}{2}x-3
\frac{1}{2} বাৰ -6+3x পুৰণ কৰক৷
4\left(\frac{3}{2}x-3\right)+5x=8
অন্য সমীকৰণত y-ৰ বাবে \frac{3x}{2}-3 স্থানাপন কৰক, 4y+5x=8৷
6x-12+5x=8
4 বাৰ \frac{3x}{2}-3 পুৰণ কৰক৷
11x-12=8
5x লৈ 6x যোগ কৰক৷
11x=20
সমীকৰণৰ দুয়োটা দিশতে 12 যোগ কৰক৷
x=\frac{20}{11}
11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=\frac{3}{2}\times \frac{20}{11}-3
y=\frac{3}{2}x-3-ত x-ৰ বাবে \frac{20}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{30}{11}-3
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{3}{2} বাৰ \frac{20}{11} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
y=-\frac{3}{11}
\frac{30}{11} লৈ -3 যোগ কৰক৷
y=-\frac{3}{11},x=\frac{20}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2y-3x=-6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
2y-3x=-6,4y+5x=8
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\8\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}2&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
\left(\begin{matrix}2&-3\\4&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 4\right)}&-\frac{-3}{2\times 5-\left(-3\times 4\right)}\\-\frac{4}{2\times 5-\left(-3\times 4\right)}&\frac{2}{2\times 5-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{22}&\frac{3}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{22}\left(-6\right)+\frac{3}{22}\times 8\\-\frac{2}{11}\left(-6\right)+\frac{1}{11}\times 8\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{11}\\\frac{20}{11}\end{matrix}\right)
গণনা কৰক৷
y=-\frac{3}{11},x=\frac{20}{11}
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
2y-3x=-6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 3x বিয়োগ কৰক৷
2y-3x=-6,4y+5x=8
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4\times 2y+4\left(-3\right)x=4\left(-6\right),2\times 4y+2\times 5x=2\times 8
2y আৰু 4y সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
8y-12x=-24,8y+10x=16
সৰলীকৰণ৷
8y-8y-12x-10x=-24-16
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 8y-12x=-24-ৰ পৰা 8y+10x=16 হৰণ কৰক৷
-12x-10x=-24-16
-8y লৈ 8y যোগ কৰক৷ চৰ্তাৱলী 8y আৰু -8y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-22x=-24-16
-10x লৈ -12x যোগ কৰক৷
-22x=-40
-16 লৈ -24 যোগ কৰক৷
x=\frac{20}{11}
-22-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4y+5\times \frac{20}{11}=8
4y+5x=8-ত x-ৰ বাবে \frac{20}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4y+\frac{100}{11}=8
5 বাৰ \frac{20}{11} পুৰণ কৰক৷
4y=-\frac{12}{11}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{100}{11} বিয়োগ কৰক৷
y=-\frac{3}{11}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-\frac{3}{11},x=\frac{20}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}