\left\{ \begin{array} { l } { 2 x - 3 y = 18 } \\ { 3 x + 4 y = - 7 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=3
y=-4
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x-3y=18,3x+4y=-7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x-3y=18
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=3y+18
সমীকৰণৰ দুয়োটা দিশতে 3y যোগ কৰক৷
x=\frac{1}{2}\left(3y+18\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{2}y+9
\frac{1}{2} বাৰ 18+3y পুৰণ কৰক৷
3\left(\frac{3}{2}y+9\right)+4y=-7
অন্য সমীকৰণত x-ৰ বাবে 9+\frac{3y}{2} স্থানাপন কৰক, 3x+4y=-7৷
\frac{9}{2}y+27+4y=-7
3 বাৰ 9+\frac{3y}{2} পুৰণ কৰক৷
\frac{17}{2}y+27=-7
4y লৈ \frac{9y}{2} যোগ কৰক৷
\frac{17}{2}y=-34
সমীকৰণৰ দুয়োটা দিশৰ পৰা 27 বিয়োগ কৰক৷
y=-4
\frac{17}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{3}{2}\left(-4\right)+9
x=\frac{3}{2}y+9-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-6+9
\frac{3}{2} বাৰ -4 পুৰণ কৰক৷
x=3
-6 লৈ 9 যোগ কৰক৷
x=3,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x-3y=18,3x+4y=-7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\-7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&-3\\3&4\end{matrix}\right))\left(\begin{matrix}2&-3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&4\end{matrix}\right))\left(\begin{matrix}18\\-7\end{matrix}\right)
\left(\begin{matrix}2&-3\\3&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&4\end{matrix}\right))\left(\begin{matrix}18\\-7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&4\end{matrix}\right))\left(\begin{matrix}18\\-7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-\left(-3\times 3\right)}&-\frac{-3}{2\times 4-\left(-3\times 3\right)}\\-\frac{3}{2\times 4-\left(-3\times 3\right)}&\frac{2}{2\times 4-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}18\\-7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&\frac{3}{17}\\-\frac{3}{17}&\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}18\\-7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 18+\frac{3}{17}\left(-7\right)\\-\frac{3}{17}\times 18+\frac{2}{17}\left(-7\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-4\end{matrix}\right)
গণনা কৰক৷
x=3,y=-4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x-3y=18,3x+4y=-7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 2x+3\left(-3\right)y=3\times 18,2\times 3x+2\times 4y=2\left(-7\right)
2x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
6x-9y=54,6x+8y=-14
সৰলীকৰণ৷
6x-6x-9y-8y=54+14
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x-9y=54-ৰ পৰা 6x+8y=-14 হৰণ কৰক৷
-9y-8y=54+14
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-17y=54+14
-8y লৈ -9y যোগ কৰক৷
-17y=68
14 লৈ 54 যোগ কৰক৷
y=-4
-17-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x+4\left(-4\right)=-7
3x+4y=-7-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x-16=-7
4 বাৰ -4 পুৰণ কৰক৷
3x=9
সমীকৰণৰ দুয়োটা দিশতে 16 যোগ কৰক৷
x=3
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=3,y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}