মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x+y=6,4x-y=7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+y=6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-y+6
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-y+6\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}y+3
\frac{1}{2} বাৰ -y+6 পুৰণ কৰক৷
4\left(-\frac{1}{2}y+3\right)-y=7
অন্য সমীকৰণত x-ৰ বাবে -\frac{y}{2}+3 স্থানাপন কৰক, 4x-y=7৷
-2y+12-y=7
4 বাৰ -\frac{y}{2}+3 পুৰণ কৰক৷
-3y+12=7
-y লৈ -2y যোগ কৰক৷
-3y=-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12 বিয়োগ কৰক৷
y=\frac{5}{3}
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}\times \frac{5}{3}+3
x=-\frac{1}{2}y+3-ত y-ৰ বাবে \frac{5}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{5}{6}+3
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{1}{2} বাৰ \frac{5}{3} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{13}{6}
-\frac{5}{6} লৈ 3 যোগ কৰক৷
x=\frac{13}{6},y=\frac{5}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x+y=6,4x-y=7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{1}{2\left(-1\right)-4}\\-\frac{4}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 6+\frac{1}{6}\times 7\\\frac{2}{3}\times 6-\frac{1}{3}\times 7\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{6}\\\frac{5}{3}\end{matrix}\right)
গণনা কৰক৷
x=\frac{13}{6},y=\frac{5}{3}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x+y=6,4x-y=7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4\times 2x+4y=4\times 6,2\times 4x+2\left(-1\right)y=2\times 7
2x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
8x+4y=24,8x-2y=14
সৰলীকৰণ৷
8x-8x+4y+2y=24-14
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 8x+4y=24-ৰ পৰা 8x-2y=14 হৰণ কৰক৷
4y+2y=24-14
-8x লৈ 8x যোগ কৰক৷ চৰ্তাৱলী 8x আৰু -8x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
6y=24-14
2y লৈ 4y যোগ কৰক৷
6y=10
-14 লৈ 24 যোগ কৰক৷
y=\frac{5}{3}
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x-\frac{5}{3}=7
4x-y=7-ত y-ৰ বাবে \frac{5}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x=\frac{26}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{3} যোগ কৰক৷
x=\frac{13}{6}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{13}{6},y=\frac{5}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷