\left\{ \begin{array} { l } { 2 x + 8 y = 16 } \\ { 11 - x + 2 y = 0 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=10
y=-\frac{1}{2}=-0.5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x+8y=16,-x+2y+11=0
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+8y=16
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-8y+16
সমীকৰণৰ দুয়োটা দিশৰ পৰা 8y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-8y+16\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-4y+8
\frac{1}{2} বাৰ -8y+16 পুৰণ কৰক৷
-\left(-4y+8\right)+2y+11=0
অন্য সমীকৰণত x-ৰ বাবে -4y+8 স্থানাপন কৰক, -x+2y+11=0৷
4y-8+2y+11=0
-1 বাৰ -4y+8 পুৰণ কৰক৷
6y-8+11=0
2y লৈ 4y যোগ কৰক৷
6y+3=0
11 লৈ -8 যোগ কৰক৷
6y=-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
y=-\frac{1}{2}
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-4\left(-\frac{1}{2}\right)+8
x=-4y+8-ত y-ৰ বাবে -\frac{1}{2}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=2+8
-4 বাৰ -\frac{1}{2} পুৰণ কৰক৷
x=10
2 লৈ 8 যোগ কৰক৷
x=10,y=-\frac{1}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x+8y=16,-x+2y+11=0
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-11\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-8\left(-1\right)}&-\frac{8}{2\times 2-8\left(-1\right)}\\-\frac{-1}{2\times 2-8\left(-1\right)}&\frac{2}{2\times 2-8\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{2}{3}\\\frac{1}{12}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 16-\frac{2}{3}\left(-11\right)\\\frac{1}{12}\times 16+\frac{1}{6}\left(-11\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-\frac{1}{2}\end{matrix}\right)
গণনা কৰক৷
x=10,y=-\frac{1}{2}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x+8y=16,-x+2y+11=0
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-2x-8y=-16,2\left(-1\right)x+2\times 2y+2\times 11=0
2x আৰু -x সমান কৰিবৰ বাবে, -1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
-2x-8y=-16,-2x+4y+22=0
সৰলীকৰণ৷
-2x+2x-8y-4y-22=-16
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -2x-8y=-16-ৰ পৰা -2x+4y+22=0 হৰণ কৰক৷
-8y-4y-22=-16
2x লৈ -2x যোগ কৰক৷ চৰ্তাৱলী -2x আৰু 2x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-12y-22=-16
-4y লৈ -8y যোগ কৰক৷
-12y=6
সমীকৰণৰ দুয়োটা দিশতে 22 যোগ কৰক৷
y=-\frac{1}{2}
-12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-x+2\left(-\frac{1}{2}\right)+11=0
-x+2y+11=0-ত y-ৰ বাবে -\frac{1}{2}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-x-1+11=0
2 বাৰ -\frac{1}{2} পুৰণ কৰক৷
-x+10=0
11 লৈ -1 যোগ কৰক৷
-x=-10
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
x=10
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=10,y=-\frac{1}{2}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}