মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x+5y=1,-2x+y=5
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+5y=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-5y+1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-5y+1\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{5}{2}y+\frac{1}{2}
\frac{1}{2} বাৰ -5y+1 পুৰণ কৰক৷
-2\left(-\frac{5}{2}y+\frac{1}{2}\right)+y=5
অন্য সমীকৰণত x-ৰ বাবে \frac{-5y+1}{2} স্থানাপন কৰক, -2x+y=5৷
5y-1+y=5
-2 বাৰ \frac{-5y+1}{2} পুৰণ কৰক৷
6y-1=5
y লৈ 5y যোগ কৰক৷
6y=6
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
y=1
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{-5+1}{2}
x=-\frac{5}{2}y+\frac{1}{2}-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-2
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{5}{2} লৈ \frac{1}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-2,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x+5y=1,-2x+y=5
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}2&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
\left(\begin{matrix}2&5\\-2&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\left(-2\right)}&-\frac{5}{2-5\left(-2\right)}\\-\frac{-2}{2-5\left(-2\right)}&\frac{2}{2-5\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&-\frac{5}{12}\\\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}-\frac{5}{12}\times 5\\\frac{1}{6}+\frac{1}{6}\times 5\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
গণনা কৰক৷
x=-2,y=1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x+5y=1,-2x+y=5
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-2\times 2x-2\times 5y=-2,2\left(-2\right)x+2y=2\times 5
2x আৰু -2x সমান কৰিবৰ বাবে, -2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
-4x-10y=-2,-4x+2y=10
সৰলীকৰণ৷
-4x+4x-10y-2y=-2-10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -4x-10y=-2-ৰ পৰা -4x+2y=10 হৰণ কৰক৷
-10y-2y=-2-10
4x লৈ -4x যোগ কৰক৷ চৰ্তাৱলী -4x আৰু 4x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-12y=-2-10
-2y লৈ -10y যোগ কৰক৷
-12y=-12
-10 লৈ -2 যোগ কৰক৷
y=1
-12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-2x+1=5
-2x+y=5-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-2x=4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x=-2
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷