মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x+3y=780,5x+4y=1320
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+3y=780
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-3y+780
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-3y+780\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{2}y+390
\frac{1}{2} বাৰ -3y+780 পুৰণ কৰক৷
5\left(-\frac{3}{2}y+390\right)+4y=1320
অন্য সমীকৰণত x-ৰ বাবে -\frac{3y}{2}+390 স্থানাপন কৰক, 5x+4y=1320৷
-\frac{15}{2}y+1950+4y=1320
5 বাৰ -\frac{3y}{2}+390 পুৰণ কৰক৷
-\frac{7}{2}y+1950=1320
4y লৈ -\frac{15y}{2} যোগ কৰক৷
-\frac{7}{2}y=-630
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1950 বিয়োগ কৰক৷
y=180
-\frac{7}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{2}\times 180+390
x=-\frac{3}{2}y+390-ত y-ৰ বাবে 180-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-270+390
-\frac{3}{2} বাৰ 180 পুৰণ কৰক৷
x=120
-270 লৈ 390 যোগ কৰক৷
x=120,y=180
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x+3y=780,5x+4y=1320
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}780\\1320\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 5}&-\frac{3}{2\times 4-3\times 5}\\-\frac{5}{2\times 4-3\times 5}&\frac{2}{2\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}780\\1320\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{3}{7}\\\frac{5}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}780\\1320\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\times 780+\frac{3}{7}\times 1320\\\frac{5}{7}\times 780-\frac{2}{7}\times 1320\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\180\end{matrix}\right)
গণনা কৰক৷
x=120,y=180
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x+3y=780,5x+4y=1320
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5\times 2x+5\times 3y=5\times 780,2\times 5x+2\times 4y=2\times 1320
2x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
10x+15y=3900,10x+8y=2640
সৰলীকৰণ৷
10x-10x+15y-8y=3900-2640
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 10x+15y=3900-ৰ পৰা 10x+8y=2640 হৰণ কৰক৷
15y-8y=3900-2640
-10x লৈ 10x যোগ কৰক৷ চৰ্তাৱলী 10x আৰু -10x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
7y=3900-2640
-8y লৈ 15y যোগ কৰক৷
7y=1260
-2640 লৈ 3900 যোগ কৰক৷
y=180
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x+4\times 180=1320
5x+4y=1320-ত y-ৰ বাবে 180-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x+720=1320
4 বাৰ 180 পুৰণ কৰক৷
5x=600
সমীকৰণৰ দুয়োটা দিশৰ পৰা 720 বিয়োগ কৰক৷
x=120
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=120,y=180
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷