\left\{ \begin{array} { l } { 2 x + 3 y = 1 } \\ { 3 x - 4 y = 3 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=\frac{13}{17}\approx 0.764705882
y=-\frac{3}{17}\approx -0.176470588
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x+3y=1,3x-4y=3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2x+3y=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
2x=-3y+1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{2}\left(-3y+1\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{2}y+\frac{1}{2}
\frac{1}{2} বাৰ -3y+1 পুৰণ কৰক৷
3\left(-\frac{3}{2}y+\frac{1}{2}\right)-4y=3
অন্য সমীকৰণত x-ৰ বাবে \frac{-3y+1}{2} স্থানাপন কৰক, 3x-4y=3৷
-\frac{9}{2}y+\frac{3}{2}-4y=3
3 বাৰ \frac{-3y+1}{2} পুৰণ কৰক৷
-\frac{17}{2}y+\frac{3}{2}=3
-4y লৈ -\frac{9y}{2} যোগ কৰক৷
-\frac{17}{2}y=\frac{3}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3}{2} বিয়োগ কৰক৷
y=-\frac{3}{17}
-\frac{17}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{2}\left(-\frac{3}{17}\right)+\frac{1}{2}
x=-\frac{3}{2}y+\frac{1}{2}-ত y-ৰ বাবে -\frac{3}{17}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{9}{34}+\frac{1}{2}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{3}{2} বাৰ -\frac{3}{17} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{13}{17}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{9}{34} লৈ \frac{1}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{13}{17},y=-\frac{3}{17}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
2x+3y=1,3x-4y=3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}2&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
\left(\begin{matrix}2&3\\3&-4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-3\times 3}&-\frac{3}{2\left(-4\right)-3\times 3}\\-\frac{3}{2\left(-4\right)-3\times 3}&\frac{2}{2\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&\frac{3}{17}\\\frac{3}{17}&-\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}+\frac{3}{17}\times 3\\\frac{3}{17}-\frac{2}{17}\times 3\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{17}\\-\frac{3}{17}\end{matrix}\right)
গণনা কৰক৷
x=\frac{13}{17},y=-\frac{3}{17}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
2x+3y=1,3x-4y=3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 2x+3\times 3y=3,2\times 3x+2\left(-4\right)y=2\times 3
2x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
6x+9y=3,6x-8y=6
সৰলীকৰণ৷
6x-6x+9y+8y=3-6
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 6x+9y=3-ৰ পৰা 6x-8y=6 হৰণ কৰক৷
9y+8y=3-6
-6x লৈ 6x যোগ কৰক৷ চৰ্তাৱলী 6x আৰু -6x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
17y=3-6
8y লৈ 9y যোগ কৰক৷
17y=-3
-6 লৈ 3 যোগ কৰক৷
y=-\frac{3}{17}
17-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x-4\left(-\frac{3}{17}\right)=3
3x-4y=3-ত y-ৰ বাবে -\frac{3}{17}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x+\frac{12}{17}=3
-4 বাৰ -\frac{3}{17} পুৰণ কৰক৷
3x=\frac{39}{17}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{12}{17} বিয়োগ কৰক৷
x=\frac{13}{17}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{13}{17},y=-\frac{3}{17}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}