\left\{ \begin{array} { l } { 2 p + ( 1 ) q - 3 t = ( 4 ) } \\ { ( - 1 ) p - q + ( 1 ) t = - 3 } \\ { ( - 2 ) p - ( - 6 ) q - 5 t = ( - 7 ) } \end{array} \right.
p, q, t-ৰ বাবে সমাধান কৰক
t = \frac{17}{15} = 1\frac{2}{15} \approx 1.133333333
p = \frac{49}{15} = 3\frac{4}{15} \approx 3.266666667
q=\frac{13}{15}\approx 0.866666667
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
-p-q+1t=-3 2p+1q-3t=4 -2p-\left(-6q\right)-5t=-7
সমীকৰণবোৰ পুনৰ ক্ৰম কৰক৷
p=-q+t+3
pৰ বাবে -p-q+1t=-3 সমাধান কৰক৷
2\left(-q+t+3\right)+1q-3t=4 -2\left(-q+t+3\right)-\left(-6q\right)-5t=-7
দ্বিতীয় আৰু তৃতীয় সমীকৰণত pৰ বাবে বিকল্প -q+t+3৷
q=2-t t=\frac{8}{7}q+\frac{1}{7}
q আৰু tৰ বাবে এই সমীকৰণবোৰ সমাধান কৰক৷
t=\frac{8}{7}\left(2-t\right)+\frac{1}{7}
সমীকৰণ t=\frac{8}{7}q+\frac{1}{7}ত qৰ বাবে বিকল্প 2-t৷
t=\frac{17}{15}
tৰ বাবে t=\frac{8}{7}\left(2-t\right)+\frac{1}{7} সমাধান কৰক৷
q=2-\frac{17}{15}
সমীকৰণ q=2-tত tৰ বাবে বিকল্প \frac{17}{15}৷
q=\frac{13}{15}
q=2-\frac{17}{15}ৰ পৰা q গণনা কৰক৷
p=-\frac{13}{15}+\frac{17}{15}+3
সমীকৰণ p=-q+t+3ত tৰ বাবে q আৰু \frac{17}{15}ৰ বাবে বিকল্প \frac{13}{15}৷
p=\frac{49}{15}
p=-\frac{13}{15}+\frac{17}{15}+3ৰ পৰা p গণনা কৰক৷
p=\frac{49}{15} q=\frac{13}{15} t=\frac{17}{15}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}