\left\{ \begin{array} { l } { 2 m - 3 n = 130 } \\ { - m + 5 = 4 n } \end{array} \right.
m, n-ৰ বাবে সমাধান কৰক
m = \frac{535}{11} = 48\frac{7}{11} \approx 48.636363636
n = -\frac{120}{11} = -10\frac{10}{11} \approx -10.909090909
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
-m+5-4n=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4n বিয়োগ কৰক৷
-m-4n=-5
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
2m-3n=130,-m-4n=-5
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
2m-3n=130
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে m পৃথক কৰি mৰ বাবে ইয়াক সমাধান কৰক৷
2m=3n+130
সমীকৰণৰ দুয়োটা দিশতে 3n যোগ কৰক৷
m=\frac{1}{2}\left(3n+130\right)
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
m=\frac{3}{2}n+65
\frac{1}{2} বাৰ 3n+130 পুৰণ কৰক৷
-\left(\frac{3}{2}n+65\right)-4n=-5
অন্য সমীকৰণত m-ৰ বাবে \frac{3n}{2}+65 স্থানাপন কৰক, -m-4n=-5৷
-\frac{3}{2}n-65-4n=-5
-1 বাৰ \frac{3n}{2}+65 পুৰণ কৰক৷
-\frac{11}{2}n-65=-5
-4n লৈ -\frac{3n}{2} যোগ কৰক৷
-\frac{11}{2}n=60
সমীকৰণৰ দুয়োটা দিশতে 65 যোগ কৰক৷
n=-\frac{120}{11}
-\frac{11}{2}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
m=\frac{3}{2}\left(-\frac{120}{11}\right)+65
m=\frac{3}{2}n+65-ত n-ৰ বাবে -\frac{120}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি m-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
m=-\frac{180}{11}+65
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{3}{2} বাৰ -\frac{120}{11} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
m=\frac{535}{11}
-\frac{180}{11} লৈ 65 যোগ কৰক৷
m=\frac{535}{11},n=-\frac{120}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-m+5-4n=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4n বিয়োগ কৰক৷
-m-4n=-5
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
2m-3n=130,-m-4n=-5
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}130\\-5\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}130\\-5\end{matrix}\right)
\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}130\\-5\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}130\\-5\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-3\left(-1\right)\right)}&-\frac{-3}{2\left(-4\right)-\left(-3\left(-1\right)\right)}\\-\frac{-1}{2\left(-4\right)-\left(-3\left(-1\right)\right)}&\frac{2}{2\left(-4\right)-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}130\\-5\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&-\frac{3}{11}\\-\frac{1}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}130\\-5\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 130-\frac{3}{11}\left(-5\right)\\-\frac{1}{11}\times 130-\frac{2}{11}\left(-5\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{535}{11}\\-\frac{120}{11}\end{matrix}\right)
গণনা কৰক৷
m=\frac{535}{11},n=-\frac{120}{11}
মেট্ৰিক্স উপাদান m আৰু n নিষ্কাষিত কৰক৷
-m+5-4n=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4n বিয়োগ কৰক৷
-m-4n=-5
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
2m-3n=130,-m-4n=-5
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-2m-\left(-3n\right)=-130,2\left(-1\right)m+2\left(-4\right)n=2\left(-5\right)
2m আৰু -m সমান কৰিবৰ বাবে, -1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 2-ৰ দ্বাৰা পুৰণ কৰক৷
-2m+3n=-130,-2m-8n=-10
সৰলীকৰণ৷
-2m+2m+3n+8n=-130+10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -2m+3n=-130-ৰ পৰা -2m-8n=-10 হৰণ কৰক৷
3n+8n=-130+10
2m লৈ -2m যোগ কৰক৷ চৰ্তাৱলী -2m আৰু 2m সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
11n=-130+10
8n লৈ 3n যোগ কৰক৷
11n=-120
10 লৈ -130 যোগ কৰক৷
n=-\frac{120}{11}
11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-m-4\left(-\frac{120}{11}\right)=-5
-m-4n=-5-ত n-ৰ বাবে -\frac{120}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি m-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-m+\frac{480}{11}=-5
-4 বাৰ -\frac{120}{11} পুৰণ কৰক৷
-m=-\frac{535}{11}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{480}{11} বিয়োগ কৰক৷
m=\frac{535}{11}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
m=\frac{535}{11},n=-\frac{120}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}