\left\{ \begin{array} { l } { 125 x + 110 y = 6100 } \\ { x + y = 50 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=40
y=10
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
125x+110y=6100,x+y=50
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
125x+110y=6100
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
125x=-110y+6100
সমীকৰণৰ দুয়োটা দিশৰ পৰা 110y বিয়োগ কৰক৷
x=\frac{1}{125}\left(-110y+6100\right)
125-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{22}{25}y+\frac{244}{5}
\frac{1}{125} বাৰ -110y+6100 পুৰণ কৰক৷
-\frac{22}{25}y+\frac{244}{5}+y=50
অন্য সমীকৰণত x-ৰ বাবে -\frac{22y}{25}+\frac{244}{5} স্থানাপন কৰক, x+y=50৷
\frac{3}{25}y+\frac{244}{5}=50
y লৈ -\frac{22y}{25} যোগ কৰক৷
\frac{3}{25}y=\frac{6}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{244}{5} বিয়োগ কৰক৷
y=10
\frac{3}{25}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{22}{25}\times 10+\frac{244}{5}
x=-\frac{22}{25}y+\frac{244}{5}-ত y-ৰ বাবে 10-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-44+244}{5}
-\frac{22}{25} বাৰ 10 পুৰণ কৰক৷
x=40
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{44}{5} লৈ \frac{244}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=40,y=10
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
125x+110y=6100,x+y=50
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6100\\50\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
\left(\begin{matrix}125&110\\1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{125-110}&-\frac{110}{125-110}\\-\frac{1}{125-110}&\frac{125}{125-110}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&-\frac{22}{3}\\-\frac{1}{15}&\frac{25}{3}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 6100-\frac{22}{3}\times 50\\-\frac{1}{15}\times 6100+\frac{25}{3}\times 50\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\10\end{matrix}\right)
গণনা কৰক৷
x=40,y=10
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
125x+110y=6100,x+y=50
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
125x+110y=6100,125x+125y=125\times 50
125x আৰু x সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 125-ৰ দ্বাৰা পুৰণ কৰক৷
125x+110y=6100,125x+125y=6250
সৰলীকৰণ৷
125x-125x+110y-125y=6100-6250
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 125x+110y=6100-ৰ পৰা 125x+125y=6250 হৰণ কৰক৷
110y-125y=6100-6250
-125x লৈ 125x যোগ কৰক৷ চৰ্তাৱলী 125x আৰু -125x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-15y=6100-6250
-125y লৈ 110y যোগ কৰক৷
-15y=-150
-6250 লৈ 6100 যোগ কৰক৷
y=10
-15-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x+10=50
x+y=50-ত y-ৰ বাবে 10-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=40
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
x=40,y=10
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}