\left\{ \begin{array} { l } { 0.5 x - 0.8 y + 9 = 4 } \\ { \frac { x } { 3 } + \frac { y } { 5 } = 4 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=6
y=10
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
0.5x-0.8y+9=4,\frac{1}{3}x+\frac{1}{5}y=4
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
0.5x-0.8y+9=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
0.5x-0.8y=-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 9 বিয়োগ কৰক৷
0.5x=0.8y-5
সমীকৰণৰ দুয়োটা দিশতে \frac{4y}{5} যোগ কৰক৷
x=2\left(0.8y-5\right)
2-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=1.6y-10
2 বাৰ \frac{4y}{5}-5 পুৰণ কৰক৷
\frac{1}{3}\left(1.6y-10\right)+\frac{1}{5}y=4
অন্য সমীকৰণত x-ৰ বাবে \frac{8y}{5}-10 স্থানাপন কৰক, \frac{1}{3}x+\frac{1}{5}y=4৷
\frac{8}{15}y-\frac{10}{3}+\frac{1}{5}y=4
\frac{1}{3} বাৰ \frac{8y}{5}-10 পুৰণ কৰক৷
\frac{11}{15}y-\frac{10}{3}=4
\frac{y}{5} লৈ \frac{8y}{15} যোগ কৰক৷
\frac{11}{15}y=\frac{22}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{10}{3} যোগ কৰক৷
y=10
\frac{11}{15}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=1.6\times 10-10
x=1.6y-10-ত y-ৰ বাবে 10-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=16-10
1.6 বাৰ 10 পুৰণ কৰক৷
x=6
16 লৈ -10 যোগ কৰক৷
x=6,y=10
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
0.5x-0.8y+9=4,\frac{1}{3}x+\frac{1}{5}y=4
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\4\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&-0.8\\\frac{1}{3}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}-5\\4\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{5}}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}&-\frac{-0.8}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}\\-\frac{\frac{1}{3}}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}&\frac{0.5}{0.5\times \frac{1}{5}-\left(-0.8\times \frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}-5\\4\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{11}&\frac{24}{11}\\-\frac{10}{11}&\frac{15}{11}\end{matrix}\right)\left(\begin{matrix}-5\\4\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{11}\left(-5\right)+\frac{24}{11}\times 4\\-\frac{10}{11}\left(-5\right)+\frac{15}{11}\times 4\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
গণনা কৰক৷
x=6,y=10
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
0.5x-0.8y+9=4,\frac{1}{3}x+\frac{1}{5}y=4
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
\frac{1}{3}\times 0.5x+\frac{1}{3}\left(-0.8\right)y+\frac{1}{3}\times 9=\frac{1}{3}\times 4,0.5\times \frac{1}{3}x+0.5\times \frac{1}{5}y=0.5\times 4
\frac{x}{2} আৰু \frac{x}{3} সমান কৰিবৰ বাবে, \frac{1}{3}-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 0.5-ৰ দ্বাৰা পুৰণ কৰক৷
\frac{1}{6}x-\frac{4}{15}y+3=\frac{4}{3},\frac{1}{6}x+\frac{1}{10}y=2
সৰলীকৰণ৷
\frac{1}{6}x-\frac{1}{6}x-\frac{4}{15}y-\frac{1}{10}y+3=\frac{4}{3}-2
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি \frac{1}{6}x-\frac{4}{15}y+3=\frac{4}{3}-ৰ পৰা \frac{1}{6}x+\frac{1}{10}y=2 হৰণ কৰক৷
-\frac{4}{15}y-\frac{1}{10}y+3=\frac{4}{3}-2
-\frac{x}{6} লৈ \frac{x}{6} যোগ কৰক৷ চৰ্তাৱলী \frac{x}{6} আৰু -\frac{x}{6} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{11}{30}y+3=\frac{4}{3}-2
-\frac{y}{10} লৈ -\frac{4y}{15} যোগ কৰক৷
-\frac{11}{30}y+3=-\frac{2}{3}
-2 লৈ \frac{4}{3} যোগ কৰক৷
-\frac{11}{30}y=-\frac{11}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
y=10
-\frac{11}{30}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
\frac{1}{3}x+\frac{1}{5}\times 10=4
\frac{1}{3}x+\frac{1}{5}y=4-ত y-ৰ বাবে 10-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
\frac{1}{3}x+2=4
\frac{1}{5} বাৰ 10 পুৰণ কৰক৷
\frac{1}{3}x=2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
x=6
3-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=6,y=10
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}