মুখ্য সমললৈ এৰি যাওক
a, b-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-1+a+b=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
a+b=1
উভয় কাষে 1 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
-9+3a+b=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
3a+b=9
উভয় কাষে 9 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
a+b=1,3a+b=9
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
a+b=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে a পৃথক কৰি aৰ বাবে ইয়াক সমাধান কৰক৷
a=-b+1
সমীকৰণৰ দুয়োটা দিশৰ পৰা b বিয়োগ কৰক৷
3\left(-b+1\right)+b=9
অন্য সমীকৰণত a-ৰ বাবে -b+1 স্থানাপন কৰক, 3a+b=9৷
-3b+3+b=9
3 বাৰ -b+1 পুৰণ কৰক৷
-2b+3=9
b লৈ -3b যোগ কৰক৷
-2b=6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
b=-3
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
a=-\left(-3\right)+1
a=-b+1-ত b-ৰ বাবে -3-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি a-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
a=3+1
-1 বাৰ -3 পুৰণ কৰক৷
a=4
3 লৈ 1 যোগ কৰক৷
a=4,b=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-1+a+b=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
a+b=1
উভয় কাষে 1 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
-9+3a+b=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
3a+b=9
উভয় কাষে 9 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
a+b=1,3a+b=9
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}+\frac{1}{2}\times 9\\\frac{3}{2}-\frac{1}{2}\times 9\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
গণনা কৰক৷
a=4,b=-3
মেট্ৰিক্স উপাদান a আৰু b নিষ্কাষিত কৰক৷
-1+a+b=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
a+b=1
উভয় কাষে 1 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
-9+3a+b=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
3a+b=9
উভয় কাষে 9 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
a+b=1,3a+b=9
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
a-3a+b-b=1-9
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি a+b=1-ৰ পৰা 3a+b=9 হৰণ কৰক৷
a-3a=1-9
-b লৈ b যোগ কৰক৷ চৰ্তাৱলী b আৰু -b সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-2a=1-9
-3a লৈ a যোগ কৰক৷
-2a=-8
-9 লৈ 1 যোগ কৰক৷
a=4
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3\times 4+b=9
3a+b=9-ত a-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি b-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
12+b=9
3 বাৰ 4 পুৰণ কৰক৷
b=-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12 বিয়োগ কৰক৷
a=4,b=-3
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷