\left\{ \begin{array} { l } { - 6 x - 4 y = 2 } \\ { 2 x + 8 y = 26 } \end{array} \right.
x, y-ৰ বাবে সমাধান কৰক
x=-3
y=4
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
-6x-4y=2,2x+8y=26
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
-6x-4y=2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
-6x=4y+2
সমীকৰণৰ দুয়োটা দিশতে 4y যোগ কৰক৷
x=-\frac{1}{6}\left(4y+2\right)
-6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{2}{3}y-\frac{1}{3}
-\frac{1}{6} বাৰ 4y+2 পুৰণ কৰক৷
2\left(-\frac{2}{3}y-\frac{1}{3}\right)+8y=26
অন্য সমীকৰণত x-ৰ বাবে \frac{-2y-1}{3} স্থানাপন কৰক, 2x+8y=26৷
-\frac{4}{3}y-\frac{2}{3}+8y=26
2 বাৰ \frac{-2y-1}{3} পুৰণ কৰক৷
\frac{20}{3}y-\frac{2}{3}=26
8y লৈ -\frac{4y}{3} যোগ কৰক৷
\frac{20}{3}y=\frac{80}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{2}{3} যোগ কৰক৷
y=4
\frac{20}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{2}{3}\times 4-\frac{1}{3}
x=-\frac{2}{3}y-\frac{1}{3}-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-8-1}{3}
-\frac{2}{3} বাৰ 4 পুৰণ কৰক৷
x=-3
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{8}{3} লৈ -\frac{1}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-3,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
-6x-4y=2,2x+8y=26
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\26\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-6\times 8-\left(-4\times 2\right)}&-\frac{-4}{-6\times 8-\left(-4\times 2\right)}\\-\frac{2}{-6\times 8-\left(-4\times 2\right)}&-\frac{6}{-6\times 8-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}2\\26\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{1}{10}\\\frac{1}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}2\\26\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 2-\frac{1}{10}\times 26\\\frac{1}{20}\times 2+\frac{3}{20}\times 26\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
গণনা কৰক৷
x=-3,y=4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
-6x-4y=2,2x+8y=26
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\left(-6\right)x+2\left(-4\right)y=2\times 2,-6\times 2x-6\times 8y=-6\times 26
-6x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ -6-ৰ দ্বাৰা পুৰণ কৰক৷
-12x-8y=4,-12x-48y=-156
সৰলীকৰণ৷
-12x+12x-8y+48y=4+156
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -12x-8y=4-ৰ পৰা -12x-48y=-156 হৰণ কৰক৷
-8y+48y=4+156
12x লৈ -12x যোগ কৰক৷ চৰ্তাৱলী -12x আৰু 12x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
40y=4+156
48y লৈ -8y যোগ কৰক৷
40y=160
156 লৈ 4 যোগ কৰক৷
y=4
40-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+8\times 4=26
2x+8y=26-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+32=26
8 বাৰ 4 পুৰণ কৰক৷
2x=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 32 বিয়োগ কৰক৷
x=-3
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-3,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}