মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12},6x-y=1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
\frac{1}{4} বাৰ x-1 পুৰণ কৰক৷
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}y+\frac{1}{2}=\frac{5}{12}
\frac{1}{4} বাৰ y+2 পুৰণ কৰক৷
\frac{1}{4}x+\frac{1}{4}y+\frac{1}{4}=\frac{5}{12}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{2} লৈ -\frac{1}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\frac{1}{4}x+\frac{1}{4}y=\frac{1}{6}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{4} বিয়োগ কৰক৷
\frac{1}{4}x=-\frac{1}{4}y+\frac{1}{6}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{y}{4} বিয়োগ কৰক৷
x=4\left(-\frac{1}{4}y+\frac{1}{6}\right)
4-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক৷
x=-y+\frac{2}{3}
4 বাৰ -\frac{y}{4}+\frac{1}{6} পুৰণ কৰক৷
6\left(-y+\frac{2}{3}\right)-y=1
অন্য সমীকৰণত x-ৰ বাবে -y+\frac{2}{3} স্থানাপন কৰক, 6x-y=1৷
-6y+4-y=1
6 বাৰ -y+\frac{2}{3} পুৰণ কৰক৷
-7y+4=1
-y লৈ -6y যোগ কৰক৷
-7y=-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
y=\frac{3}{7}
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{7}+\frac{2}{3}
x=-y+\frac{2}{3}-ত y-ৰ বাবে \frac{3}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{5}{21}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{3}{7} লৈ \frac{2}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{5}{21},y=\frac{3}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12},6x-y=1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
প্ৰথম সমীকৰণটোক মান্য ৰূপত ৰাখিবলৈ সৰলীকৰণ কৰক
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
\frac{1}{4} বাৰ x-1 পুৰণ কৰক৷
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}y+\frac{1}{2}=\frac{5}{12}
\frac{1}{4} বাৰ y+2 পুৰণ কৰক৷
\frac{1}{4}x+\frac{1}{4}y+\frac{1}{4}=\frac{5}{12}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{2} লৈ -\frac{1}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\frac{1}{4}x+\frac{1}{4}y=\frac{1}{6}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{4} বিয়োগ কৰক৷
\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}&-\frac{\frac{1}{4}}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}\\-\frac{6}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}&\frac{\frac{1}{4}}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}\end{matrix}\right)\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&\frac{1}{7}\\\frac{24}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\times \frac{1}{6}+\frac{1}{7}\\\frac{24}{7}\times \frac{1}{6}-\frac{1}{7}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\\\frac{3}{7}\end{matrix}\right)
গণনা কৰক৷
x=\frac{5}{21},y=\frac{3}{7}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷